Namespaces
Variants

std::ranges:: count, std::ranges:: count_if

From cppreference.net
Algorithm library
Constrained algorithms and algorithms on ranges (C++20)
Constrained algorithms, e.g. ranges::copy , ranges::sort , ...
Execution policies (C++17)
Non-modifying sequence operations
Batch operations
(C++17)
Search operations
Modifying sequence operations
Copy operations
(C++11)
(C++11)
Swap operations
Transformation operations
Generation operations
Removing operations
Order-changing operations
(until C++17) (C++11)
(C++20) (C++20)
Sampling operations
(C++17)

Sorting and related operations
Partitioning operations
Sorting operations
Binary search operations
(on partitioned ranges)
Set operations (on sorted ranges)
Merge operations (on sorted ranges)
Heap operations
Minimum/maximum operations
Lexicographical comparison operations
Permutation operations
C library
Numeric operations
Operations on uninitialized memory
Constrained algorithms
All names in this menu belong to namespace std::ranges
Non-modifying sequence operations
Modifying sequence operations
Partitioning operations
Sorting operations
Binary search operations (on sorted ranges)
Set operations (on sorted ranges)
Heap operations
Minimum/maximum operations
Permutation operations
Fold operations
Operations on uninitialized storage
Return types
Definiert in Header <algorithm>
Aufrufsignatur
(1)
template < std:: input_iterator I, std:: sentinel_for < I > S,

class T, class Proj = std:: identity >
requires std:: indirect_binary_predicate
< ranges:: equal_to , std :: projected < I, Proj > , const T * >
constexpr std:: iter_difference_t < I >

count ( I first, S last, const T & value, Proj proj = { } ) ;
(seit C++20)
(bis C++26)
template < std:: input_iterator I, std:: sentinel_for < I > S,

class Proj = std:: identity ,
class T = std :: projected_value_t < I, Proj > >
requires std:: indirect_binary_predicate
< ranges:: equal_to , std :: projected < I, Proj > , const T * >
constexpr std:: iter_difference_t < I >

count ( I first, S last, const T & value, Proj proj = { } ) ;
(seit C++26)
(2)
template < ranges:: input_range R, class T, class Proj = std:: identity >

requires std:: indirect_binary_predicate
< ranges:: equal_to ,
std :: projected < ranges:: iterator_t < R > , Proj > , const T * >
constexpr ranges:: range_difference_t < R >

count ( R && r, const T & value, Proj proj = { } ) ;
(seit C++20)
(bis C++26)
template < ranges:: input_range R, class Proj = std:: identity ,

class T = std :: projected_value_t < ranges:: iterator_t < R > , Proj > >
requires std:: indirect_binary_predicate
< ranges:: equal_to ,
std :: projected < ranges:: iterator_t < R > , Proj > , const T * >
constexpr ranges:: range_difference_t < R >

count ( R && r, const T & value, Proj proj = { } ) ;
(seit C++26)
template < std:: input_iterator I, std:: sentinel_for < I > S,

class Proj = std:: identity ,
std:: indirect_unary_predicate < std :: projected < I, Proj >> Pred >
constexpr std:: iter_difference_t < I >

count_if ( I first, S last, Pred pred, Proj proj = { } ) ;
(3) (seit C++20)
template < ranges:: input_range R, class Proj = std:: identity ,

std:: indirect_unary_predicate <
std :: projected < ranges:: iterator_t < R > , Proj >> Pred >
constexpr ranges:: range_difference_t < R >

count_if ( R && r, Pred pred, Proj proj = { } ) ;
(4) (seit C++20)

Gibt die Anzahl der Elemente im Bereich [ first , last ) zurück, die bestimmte Kriterien erfüllen.

1) Zählt die Elemente, die gleich value sind.
3) Zählt Elemente, für die das Prädikat p true zurückgibt.
2,4) Gleich wie (1,3) , verwendet jedoch r als Quellbereich, als ob ranges:: begin ( r ) als first und ranges:: end ( r ) als last verwendet würde.

Die auf dieser Seite beschriebenen funktionsähnlichen Entitäten sind Algorithm Function Objects (informell bekannt als Niebloids ), das heißt:

Inhaltsverzeichnis

Parameter

first, last - das Iterator-Sentinel-Paar, das den Bereich der zu untersuchenden Elemente definiert
r - der Bereich der zu untersuchenden Elemente
value - der zu suchende Wert
pred - Prädikat, das auf die projizierten Elemente angewendet wird
proj - Projektion, die auf die Elemente angewendet wird

Rückgabewert

Anzahl der Elemente, die die Bedingung erfüllen.

Komplexität

Genau last - first Vergleiche und Projektion.

Hinweise

Für die Anzahl der Elemente im Bereich ohne zusätzliche Kriterien, siehe std::ranges::distance .

Feature-Test Makro Wert Std Funktion
__cpp_lib_algorithm_default_value_type 202403 (C++26) Listeninitialisierung für Algorithmen ( 1,2 )

Mögliche Implementierung

count (1)
struct count_fn
{
    template<std::input_iterator I, std::sentinel_for<I> S,
             class Proj = std::identity, class T = std::projected_value_t<I, Proj>>
    requires std::indirect_binary_predicate<ranges::equal_to,
                                            std::projected<I, Proj>, const T*>
    constexpr std::iter_difference_t<I>
        operator()(I first, S last, const T& value, Proj proj = {}) const
    {
        std::iter_difference_t<I> counter = 0;
        for (; first != last; ++first)
            if (std::invoke(proj, *first) == value)
                ++counter;
        return counter;
    }
    template<ranges::input_range R, class Proj = std::identity
             class T = std::projected_value_t<ranges::iterator_t<R>, Proj>>
    requires std::indirect_binary_predicate<ranges::equal_to,
                                            std::projected<ranges::iterator_t<R>, Proj>,
                                            const T*>
    constexpr ranges::range_difference_t<R>
        operator()(R&& r, const T& value, Proj proj = {}) const
    {
        return (*this)(ranges::begin(r), ranges::end(r), value, std::ref(proj));
    }
};
inline constexpr count_fn count;
count_if (3)
struct count_if_fn
{
    template<std::input_iterator I, std::sentinel_for<I> S,
             class Proj = std::identity,
             std::indirect_unary_predicate<std::projected<I, Proj>> Pred>
    constexpr std::iter_difference_t<I>
        operator()(I first, S last, Pred pred, Proj proj = {}) const
    {
        std::iter_difference_t<I> counter = 0;
        for (; first != last; ++first)
            if (std::invoke(pred, std::invoke(proj, *first)))
                ++counter;
        return counter;
    }
    template<ranges::input_range R, class Proj = std::identity,
             std::indirect_unary_predicate<
                 std::projected<ranges::iterator_t<R>, Proj>> Pred>
    constexpr ranges::range_difference_t<R>
        operator()(R&& r, Pred pred, Proj proj = {}) const
    {
        return (*this)(ranges::begin(r), ranges::end(r),
                       std::ref(pred), std::ref(proj));
    }
};
inline constexpr count_if_fn count_if;

Beispiel

#include <algorithm>
#include <cassert>
#include <complex>
#include <iostream>
#include <vector>
int main()
{
    std::vector<int> v{1, 2, 3, 4, 4, 3, 7, 8, 9, 10};
    namespace ranges = std::ranges;
    // bestimme, wie viele Ganzzahlen in einem std::vector einem Zielwert entsprechen
    int target1 = 3;
    int target2 = 5;
    int num_items1 = ranges::count(v.begin(), v.end(), target1);
    int num_items2 = ranges::count(v, target2);
    std::cout << "number: " << target1 << " count: " << num_items1 << '\n';
    std::cout << "number: " << target2 << " count: " << num_items2 << '\n';
    // verwende einen Lambda-Ausdruck, um durch 3 teilbare Elemente zu zählen
    int num_items3 = ranges::count_if(v.begin(), v.end(), [](int i){ return i % 3 == 0; });
    std::cout << "number divisible by three: " << num_items3 << '\n';
    // verwende einen Lambda-Ausdruck, um durch 11 teilbare Elemente zu zählen
    int num_items11 = ranges::count_if(v, [](int i){ return i % 11 == 0; });
    std::cout << "number divisible by eleven: " << num_items11 << '\n';
    std::vector<std::complex<double>> nums{{4, 2}, {1, 3}, {4, 2}};
    #ifdef __cpp_lib_algorithm_default_value_type
        auto c = ranges::count(nums, {4, 2});
    #else
        auto c = ranges::count(nums, std::complex<double>{4, 2});
    #endif
    assert(c == 2);
}

Ausgabe:

number: 3 count: 2
number: 5 count: 0
number divisible by three: 3
number divisible by eleven: 0

Siehe auch

gibt den Abstand zwischen einem Iterator und einem Sentinel oder zwischen Anfang und Ende eines Bereichs zurück
(Algorithmus-Funktionsobjekt)
erstellt einen Subbereich aus einem Iterator und einer Anzahl
(Anpassungspunktobjekt)
eine view , die aus den Elementen eines range besteht, die ein Prädikat erfüllen
(Klassentemplate) (Bereichsadapterobjekt)
gibt die Anzahl der Elemente zurück, die bestimmte Kriterien erfüllen
(Funktionstemplate)