Namespaces
Variants

std::ranges:: all_of, std::ranges:: any_of, std::ranges:: none_of

From cppreference.net
Algorithm library
Constrained algorithms and algorithms on ranges (C++20)
Constrained algorithms, e.g. ranges::copy , ranges::sort , ...
Execution policies (C++17)
Non-modifying sequence operations
Batch operations
(C++17)
Search operations
Modifying sequence operations
Copy operations
(C++11)
(C++11)
Swap operations
Transformation operations
Generation operations
Removing operations
Order-changing operations
(until C++17) (C++11)
(C++20) (C++20)
Sampling operations
(C++17)

Sorting and related operations
Partitioning operations
Sorting operations
Binary search operations
(on partitioned ranges)
Set operations (on sorted ranges)
Merge operations (on sorted ranges)
Heap operations
Minimum/maximum operations
Lexicographical comparison operations
Permutation operations
C library
Numeric operations
Operations on uninitialized memory
Constrained algorithms
All names in this menu belong to namespace std::ranges
Non-modifying sequence operations
Modifying sequence operations
Partitioning operations
Sorting operations
Binary search operations (on sorted ranges)
Set operations (on sorted ranges)
Heap operations
Minimum/maximum operations
Permutation operations
Fold operations
Operations on uninitialized storage
Return types
(Anmerkung: Der bereitgestellte HTML-Code enthält keinen übersetzbaren Text, da alle Tags leer sind. Die Struktur bleibt unverändert, wie angefordert.)
Definiert in Header <algorithm>
Aufrufsignatur
template < std:: input_iterator I, std:: sentinel_for < I > S,

class Proj = std:: identity ,
std:: indirect_unary_predicate < std :: projected < I, Proj >> Pred >

constexpr bool all_of ( I first, S last, Pred pred, Proj proj = { } ) ;
(1) (seit C++20)
template < ranges:: input_range R, class Proj = std:: identity ,

std:: indirect_unary_predicate <
std :: projected < ranges:: iterator_t < R > ,Proj >> Pred >

constexpr bool all_of ( R && r, Pred pred, Proj proj = { } ) ;
(2) (seit C++20)
template < std:: input_iterator I, std:: sentinel_for < I > S,

class Proj = std:: identity ,
std:: indirect_unary_predicate < std :: projected < I, Proj >> Pred >

constexpr bool any_of ( I first, S last, Pred pred, Proj proj = { } ) ;
(3) (seit C++20)
template < ranges:: input_range R, class Proj = std:: identity ,

std:: indirect_unary_predicate <
std :: projected < ranges:: iterator_t < R > ,Proj >> Pred >

constexpr bool any_of ( R && r, Pred pred, Proj proj = { } ) ;
(4) (seit C++20)
template < std:: input_iterator I, std:: sentinel_for < I > S,

class Proj = std:: identity ,
std:: indirect_unary_predicate < std :: projected < I, Proj >> Pred >

constexpr bool none_of ( I first, S last, Pred pred, Proj proj = { } ) ;
(5) (seit C++20)
template < ranges:: input_range R, class Proj = std:: identity ,

std:: indirect_unary_predicate <
std :: projected < ranges:: iterator_t < R > ,Proj >> Pred >

constexpr bool none_of ( R && r, Pred pred, Proj proj = { } ) ;
(6) (seit C++20)
1) Prüft, ob das unäre Prädikat pred für mindestens ein Element im Bereich [ first , last ) false zurückgibt (nach der Projektion mit der Projektion proj ).
3) Prüft, ob das unäre Prädikat pred für mindestens ein Element im Bereich [ first , last ) true zurückgibt (nach der Projektion mit der Projektion proj ).
5) Prüft, ob das unäre Prädikat pred für true für keines der Elemente im Bereich [ first , last ) zurückgibt (nach Projektion mit der Projektion proj ).
2,4,6) Gleich wie (1,3,5) , verwendet jedoch r als Quellbereich, als würde ranges:: begin ( r ) als first und ranges:: end ( r ) als last verwendet werden.

Die auf dieser Seite beschriebenen funktionsähnlichen Entitäten sind Algorithm Function Objects (informell bekannt als Niebloids ), das heißt:

Inhaltsverzeichnis

Parameter

first, last - das Iterator-Sentinel-Paar, das den Bereich der zu untersuchenden Elemente definiert
r - der Bereich der zu untersuchenden Elemente
pred - Prädikat, das auf die projizierten Elemente angewendet wird
proj - Projektion, die auf die Elemente angewendet wird

Rückgabewert

1,2) true falls std:: invoke ( pred, std:: invoke ( proj, * i ) ) ! = false für jeden Iterator i im Bereich, false andernfalls. Gibt true zurück, falls der Bereich leer ist.
3,4) true wenn std:: invoke ( pred, std:: invoke ( proj, * i ) ) ! = false für mindestens einen Iterator i im Bereich gilt, false sonst. Gibt false zurück, wenn der Bereich leer ist.
5,6) true wenn std:: invoke ( pred, std:: invoke ( proj, * i ) ) == false für jeden Iterator i im Bereich gilt, false andernfalls. Gibt true zurück, wenn der Bereich leer ist.
Bereich enthält einige true Elemente Ja Nein
Bereich enthält einige false Elemente Ja Nein Ja Nein [1]
all_of false true false true
any_of true true false false
none_of false false true true
  1. Der Bereich ist in diesem Fall leer.

Komplexität

Höchstens last - first Anwendungen des Prädikats und der Projektion.

Mögliche Implementierung

all_of (1,2)
struct all_of_fn
{
    template<std::input_iterator I, std::sentinel_for<I> S, class Proj = std::identity,
             std::indirect_unary_predicate<std::projected<I, Proj>> Pred>
    constexpr bool operator()(I first, S last, Pred pred, Proj proj = {}) const
    {
        return ranges::find_if_not(first, last, std::ref(pred), std::ref(proj)) == last;
    }
    template<ranges::input_range R, class Proj = std::identity,
             std::indirect_unary_predicate<
                 std::projected<ranges::iterator_t<R>,Proj>> Pred>
    constexpr bool operator()(R&& r, Pred pred, Proj proj = {}) const
    {
        return operator()(ranges::begin(r), ranges::end(r),
                          std::ref(pred), std::ref(proj));
    }
};
inline constexpr all_of_fn all_of;
any_of (3,4)
struct any_of_fn
{
    template<std::input_iterator I, std::sentinel_for<I> S, class Proj = std::identity,
             std::indirect_unary_predicate<std::projected<I, Proj>> Pred>
    constexpr bool operator()(I first, S last, Pred pred, Proj proj = {}) const
    {
        return ranges::find_if(first, last, std::ref(pred), std::ref(proj)) != last;
    }
    template<ranges::input_range R, class Proj = std::identity,
             std::indirect_unary_predicate<
                 std::projected<ranges::iterator_t<R>,Proj>> Pred>
    constexpr bool operator()(R&& r, Pred pred, Proj proj = {}) const
    {
        return operator()(ranges::begin(r), ranges::end(r),
                          std::ref(pred), std::ref(proj));
    }
};
inline constexpr any_of_fn any_of;
none_of (5,6)
struct none_of_fn
{
    template<std::input_iterator I, std::sentinel_for<I> S, class Proj = std::identity,
             std::indirect_unary_predicate<std::projected<I, Proj>> Pred>
    constexpr bool operator()(I first, S last, Pred pred, Proj proj = {}) const
    {
        return ranges::find_if(first, last, std::ref(pred), std::ref(proj)) == last;
    }
    template<ranges::input_range R, class Proj = std::identity,
             std::indirect_unary_predicate<
                 std::projected<ranges::iterator_t<R>,Proj>> Pred>
    constexpr bool operator()(R&& r, Pred pred, Proj proj = {}) const
    {
        return operator()(ranges::begin(r), ranges::end(r),
                          std::ref(pred), std::ref(proj));
    }
};
inline constexpr none_of_fn none_of;

Beispiel

#include <algorithm>
#include <functional>
#include <iostream>
#include <iterator>
#include <numeric>
#include <vector>
namespace ranges = std::ranges;
constexpr bool some_of(auto&& r, auto&& pred) // einige aber nicht alle
{
    return not (ranges::all_of(r, pred) or ranges::none_of(r, pred));
}
constexpr auto w = {1, 2, 3};
static_assert(!some_of(w, [](int x) { return x < 1; }));
static_assert( some_of(w, [](int x) { return x < 2; }));
static_assert(!some_of(w, [](int x) { return x < 4; }));
int main()
{
    std::vector<int> v(10, 2);
    std::partial_sum(v.cbegin(), v.cend(), v.begin());
    std::cout << "Unter den Zahlen: ";
    ranges::copy(v, std::ostream_iterator<int>(std::cout, " "));
    std::cout << '\n';
    if (ranges::all_of(v.cbegin(), v.cend(), [](int i) { return i % 2 == 0; }))
        std::cout << "Alle Zahlen sind gerade\n";
    if (ranges::none_of(v, std::bind(std::modulus<int>(), std::placeholders::_1, 2)))
        std::cout << "Keine davon ist ungerade\n";
    auto DivisibleBy = [](int d)
    {
        return [d](int m) { return m % d == 0; };
    };
    if (ranges::any_of(v, DivisibleBy(7)))
        std::cout << "Mindestens eine Zahl ist durch 7 teilbar\n";
}

Ausgabe:

Unter den Zahlen: 2 4 6 8 10 12 14 16 18 20
Alle Zahlen sind gerade
Keine davon ist ungerade
Mindestens eine Zahl ist durch 7 teilbar

Siehe auch

(C++11) (C++11) (C++11)
prüft, ob ein Prädikat für true für alle, irgendeine oder keine Elemente in einem Bereich steht
(Funktions-Template)