Standard library header <iterator>
From cppreference.net
Dieser Header ist Teil der Iterator -Bibliothek.
|
Dieser Header ist ein teilweise freestanding Header. Alles innerhalb dieses Headers ist freestanding außer Stream-Iteratoren. |
(since C++23) |
Konzepte |
|
Iterator-Konzepte |
|
|
(C++20)
|
spezifiziert, dass ein Typ indirekt lesbar ist durch Anwendung des Operators
*
(Konzept) |
|
(C++20)
|
spezifiziert, dass ein Wert in das referenzierte Objekt eines Iterators geschrieben werden kann
(Konzept) |
|
(C++20)
|
spezifiziert, dass ein
semiregular
Typ mit Prä- und Post-Inkrementoperatoren inkrementiert werden kann
(Konzept) |
|
(C++20)
|
spezifiziert, dass die Inkrementoperation auf einem
weakly_incrementable
Typ
gleichheitserhaltend
ist und dass der Typ
equality_comparable
ist
(Konzept) |
|
(C++20)
|
spezifiziert, dass Objekte eines Typs inkrementiert und dereferenziert werden können
(concept) |
|
(C++20)
|
spezifiziert, dass ein Typ ein Sentinel für einen
input_or_output_iterator
-Typ ist
(Konzept) |
|
(C++20)
|
spezifiziert, dass der
-
Operator auf einen Iterator und einen Sentinel angewendet werden kann, um ihre Differenz in konstanter Zeit zu berechnen
(Konzept) |
|
(C++20)
|
spezifiziert, dass ein Typ ein Input-Iterator ist, das heißt, seine referenzierten Werte können gelesen werden und er kann sowohl prä- als auch post-inkrementiert werden
(Konzept) |
|
(C++20)
|
spezifiziert, dass ein Typ ein Ausgabeiterator für einen gegebenen Werttyp ist, das heißt, Werte dieses Typs können in ihn geschrieben werden und er kann sowohl prä- als auch post-inkrementiert werden
(Konzept) |
|
(C++20)
|
spezifiziert, dass ein
input_iterator
ein Forward-Iterator ist, der Gleichheitsvergleiche und Multi-Pass unterstützt
(Konzept) |
|
(C++20)
|
spezifiziert, dass ein
forward_iterator
ein bidirektionaler Iterator ist, der Rückwärtsbewegung unterstützt
(Konzept) |
|
(C++20)
|
spezifiziert, dass ein
bidirectional_iterator
ein Random-Access-Iterator ist, der Vorwärts- und Rückwärtsbewegung in konstanter Zeit und Indizierung unterstützt
(Konzept) |
|
(C++20)
|
spezifiziert, dass ein
random_access_iterator
ein zusammenhängender Iterator ist, der sich auf Elemente bezieht, die zusammenhängend im Speicher liegen
(Konzept) |
Indirekte Aufrufbare Konzepte |
|
|
(C++20)
(C++20)
|
spezifiziert, dass ein aufrufbarer Typ mit dem Ergebnis der Dereferenzierung eines
indirectly_readable
Typs aufgerufen werden kann
(Konzept) |
|
(C++20)
|
spezifiziert, dass ein aufrufbarer Typ, wenn er mit dem Ergebnis der Dereferenzierung eines
indirectly_readable
Typs aufgerufen wird,
predicate
erfüllt
(Konzept) |
|
(C++20)
|
spezifiziert, dass ein aufrufbarer Typ, wenn er mit dem Ergebnis der Dereferenzierung zweier
indirectly_readable
Typen aufgerufen wird,
predicate
erfüllt
(Konzept) |
|
(C++20)
|
spezifiziert, dass ein aufrufbarer Typ, wenn er mit dem Ergebnis der Dereferenzierung zweier
indirectly_readable
Typen aufgerufen wird,
equivalence_relation
erfüllt
(Konzept) |
|
(C++20)
|
spezifiziert, dass ein aufrufbarer Typ, wenn er mit dem Ergebnis der Dereferenzierung zweier
indirectly_readable
Typen aufgerufen wird,
strict_weak_order
erfüllt
(Konzept) |
Allgemeine Algorithmusanforderungen |
|
|
(C++20)
|
spezifiziert, dass Werte von einem
indirectly_readable
Typ zu einem
indirectly_writable
Typ verschoben werden können
(Konzept) |
|
(C++20)
|
spezifiziert, dass Werte von einem
indirectly_readable
Typ zu einem
indirectly_writable
Typ verschoben werden können und dass die Verschiebung über ein Zwischenobjekt erfolgen kann
(Konzept) |
|
(C++20)
|
spezifiziert, dass Werte von einem
indirectly_readable
Typ zu einem
indirectly_writable
Typ kopiert werden können
(Konzept) |
|
(C++20)
|
spezifiziert, dass Werte von einem
indirectly_readable
Typ zu einem
indirectly_writable
Typ kopiert werden können und dass die Kopie über ein Zwischenobjekt ausgeführt werden kann
(Konzept) |
|
(C++20)
|
spezifiziert, dass die Werte, auf die von zwei
indirectly_readable
Typen referenziert wird, ausgetauscht werden können
(Konzept) |
|
(C++20)
|
spezifiziert, dass die Werte, auf die von zwei
indirectly_readable
Typen referenziert wird, verglichen werden können
(Konzept) |
|
(C++20)
|
spezifiziert die allgemeinen Anforderungen von Algorithmen, die Elemente direkt umordnen
(Konzept) |
|
(C++20)
|
spezifiziert die Anforderungen von Algorithmen, die sortierte Sequenzen durch Kopieren von Elementen in eine Ausgabesequenz zusammenführen
(Konzept) |
|
(C++20)
|
spezifiziert die allgemeinen Anforderungen von Algorithmen, die Sequenzen in geordnete Sequenzen umordnen
(Konzept) |
Klassen |
|
Algorithmus-Hilfsfunktionen |
|
|
(C++20)
|
berechnet das Ergebnis des Aufrufs eines aufrufbaren Objekts auf das Ergebnis der Dereferenzierung einiger
indirectly_readable
Typen
(Alias-Template) |
|
(C++20)
|
Hilfsvorlage zur Spezifikation der Constraints für Algorithmen, die Projektionen akzeptieren
(Alias-Template) |
|
(C++26)
|
berechnet den Werttyp eines
indirectly_readable
Typs durch Projektion
(Alias-Template) |
Assoziierte Typen |
|
|
(C++20)
|
berechnet den Differenztyp eines
weakly_incrementable
Typs
(Klassentemplate) |
|
(C++20)
|
berechnet den Werttyp eines
indirectly_readable
Typs
(Klassentemplate) |
|
(C++20)
(C++20)
(C++23)
(C++20)
(C++20)
(C++20)
|
berechnet die assoziierten Typen eines Iterators
(Alias-Template) |
Primitives |
|
|
bietet eine einheitliche Schnittstelle für die Eigenschaften eines Iterators
(Klassentemplate) |
|
|
Leere Klassentypen, die zur Kennzeichnung von Iterator-Kategorien verwendet werden
(Klasse) |
|
|
(deprecated in C++17)
|
Basisklasse zur Vereinfachung der Definition erforderlicher Typen für einfache Iteratoren
(Klassen-Template) |
Adaptoren |
|
|
Iterator-Adapter für die Traversierung in umgekehrter Reihenfolge
(Klassentemplate) |
|
|
(C++11)
|
Iterator-Adapter, der zu einem Rvalue dereferenziert
(Klassen-Template) |
|
(C++20)
|
Sentinel-Adapter für
std::move_iterator
(Klassentemplate) |
|
(C++23)
|
Iterator-Adapter, der einen Iterator in einen konstanten Iterator umwandelt
(Klassentemplate) |
|
(C++23)
|
berechnet einen konstanten Iteratortyp für einen gegebenen Typ
(Alias-Template) |
|
(C++23)
|
berechnet einen Sentinel-Typ zur Verwendung mit konstanten Iteratoren
(Alias-Template) |
|
(C++20)
|
passt einen Iteratortyp und seinen Sentinel an einen gemeinsamen Iteratortyp an
(Klassentemplate) |
|
(C++20)
|
Standardsentinel zur Verwendung mit Iteratoren, die die Grenze ihres Bereichs kennen
(Klasse) |
|
(C++20)
|
Iterator-Adapter, der den Abstand zum Ende des Bereichs verfolgt
(Klassentemplate) |
|
(C++20)
|
Sentinel, der stets ungleich mit jedem
weakly_incrementable
-Typ vergleicht
(Klasse) |
|
Iterator-Adapter für das Einfügen am Ende eines Containers
(Klassentemplate) |
|
|
Iterator-Adapter für das Einfügen am Anfang eines Containers
(Klassentemplate) |
|
|
Iterator-Adapter für das Einfügen in einen Container
(Klassentemplate) |
|
Stream-Iteratoren |
|
|
Eingabe-Iterator, der aus
std::basic_istream
liest
(Klassentemplate) |
|
|
Ausgabeiterator, der in
std::basic_ostream
schreibt
(Klassentemplate) |
|
|
Eingabe-Iterator, der von
std::basic_streambuf
liest
(Klassentemplate) |
|
|
Ausgabe-Iterator, der in
std::basic_streambuf
schreibt
(Klassentemplate) |
|
Customization Point Objects |
|
|
Definiert im namespace
std::ranges
|
|
|
(C++20)
|
wandelt das Ergebnis der Dereferenzierung eines Objekts in seinen assoziierten Rvalue-Referenztyp um
(Anpassungspunktobjekt) |
|
(C++20)
|
vertauscht die Werte, auf die zwei dereferenzierbare Objekte verweisen
(Anpassungspunktobjekt) |
Konstanten |
|
|
(C++20)
|
ein Objekt vom Typ
unreachable_sentinel_t
, das stets ungleich zu jedem
weakly_incrementable
-Typ verglichen wird
(Konstante) |
|
(C++20)
|
ein Objekt vom Typ
default_sentinel_t
verwendet mit Iteratoren, die die Grenze ihres Bereichs kennen
(Konstante) |
Funktionen |
|
Adaptoren |
|
|
(C++14)
|
erstellt einen
std::reverse_iterator
mit vom Argument abgeleitetem Typ
(Funktions-Template) |
|
(C++11)
|
erstellt einen
std::move_iterator
mit vom Argument abgeleitetem Typ
(Funktionsschablone) |
|
(C++23)
|
erstellt einen
std::const_iterator
vom Typ, der aus dem Argument abgeleitet wird
(Funktions-Template) |
|
(C++23)
|
erstellt einen
std::const_sentinel
mit vom Argument abgeleitetem Typ
(Funktions-Template) |
|
erstellt einen
std::front_insert_iterator
vom vom Argument abgeleiteten Typ
(Funktions-Template) |
|
|
erstellt einen
std::back_insert_iterator
vom vom Argument abgeleiteten Typ
(Funktions-Template) |
|
|
erstellt einen
std::insert_iterator
vom aus dem Argument abgeleiteten Typ
(Funktions-Template) |
|
Nicht-Member-Operatoren |
|
|
(C++11)
(C++11)
(entfernt in C++20)
(C++11)
(C++11)
(C++11)
(C++11)
(C++20)
|
vergleicht die zugrundeliegenden Iteratoren
(Funktions-Template) |
|
(C++11)
|
bewegt den Iterator vorwärts
(Funktions-Template) |
|
(C++11)
|
berechnet den Abstand zwischen zwei Iterator-Adaptoren
(Funktions-Template) |
|
vergleicht die zugrundeliegenden Iteratoren
(Funktions-Template) |
|
|
bewegt den Iterator vorwärts
(Funktions-Template) |
|
|
berechnet den Abstand zwischen zwei Iterator-Adaptoren
(Funktions-Template) |
|
|
(C++20)
|
vergleicht die Abstände zum Ende
(Funktionsschablone) |
|
(C++20)
|
bewegt den Iterator vorwärts
(Funktions-Template) |
|
(C++20)
|
berechnet den Abstand zwischen zwei Iterator-Adaptoren
(Funktions-Template) |
|
(entfernt in C++20)
|
vergleicht zwei
istream_iterator
s
(Funktions-Template) |
|
(entfernt in C++20)
|
vergleicht zwei
istreambuf_iterator
s
(Funktions-Template) |
Operationen |
|
|
rückt einen Iterator um eine gegebene Distanz vor
(Funktionsschablone) |
|
|
gibt den Abstand zwischen zwei Iteratoren zurück
(Funktionsschablone) |
|
|
(C++11)
|
erhöht einen Iterator
(Funktionsschablone) |
|
(C++11)
|
dekrementiert einen Iterator
(Funktions-Template) |
|
(C++20)
|
bewegt einen Iterator um eine gegebene Distanz oder bis zu einer gegebenen Grenze
(Algorithmus-Funktionsobjekt) |
|
(C++20)
|
gibt den Abstand zwischen einem Iterator und einem Sentinel oder zwischen dem Anfang und Ende eines Bereichs zurück
(Algorithmus-Funktionsobjekt) |
|
(C++20)
|
Erhöht einen Iterator um eine gegebene Distanz oder bis zu einer Grenze
(Algorithmus-Funktionsobjekt) |
|
(C++20)
|
Dekrementiert einen Iterator um eine gegebene Distanz oder bis zu einer Grenze
(Algorithmus-Funktionsobjekt) |
Bereichszugriff |
|
|
(C++11)
(C++14)
|
gibt einen Iterator zum Anfang eines Containers oder Arrays zurück
(Funktions-Template) |
|
(C++11)
(C++14)
|
gibt einen Iterator zum Ende eines Containers oder Arrays zurück
(Funktions-Template) |
|
(C++14)
|
gibt einen Reverse-Iterator zum Anfang eines Containers oder Arrays zurück
(Funktions-Template) |
|
(C++14)
|
gibt einen umgekehrten End-Iterator für einen Container oder ein Array zurück
(Funktionstemplate) |
|
(C++17)
(C++20)
|
gibt die Größe eines Containers oder Arrays zurück
(Funktions-Template) |
|
(C++17)
|
prüft, ob der Container leer ist
(Funktionsschablone) |
|
(C++17)
|
erhält den Zeiger auf das zugrundeliegende Array
(Funktions-Template) |
Übersicht
#include <compare> #include <concepts> namespace std { template<class T> using /* with-reference */ = T&; // exposition only template<class T> concept /* kann-referenziert-werden */ // exposition only = requires { typename /* with-reference */<T>; }; template<class T> concept /* dereferenceable */ // exposition only = requires(T& t) { { *t } -> /* kann-referenziert-werden */; // nicht erforderlich, gleichheitserhaltend zu sein }; // assoziierte Typen // Inkrementierbare Eigenschaften template<class> struct incrementable_traits; template<class T> using iter_difference_t = /* siehe Beschreibung */; // indirekt lesbare Eigenschaften template<class> struct indirectly_readable_traits; template<class T> using iter_value_t = /* siehe Beschreibung */; // Iterator-Eigenschaften template<class I> struct iterator_traits; template<class T> requires is_object_v<T> struct iterator_traits<T*>; template</* dereferenceable */ T> using iter_reference_t = decltype(*declval<T&>()); namespace ranges { // Customization Point Objects inline namespace /* nicht spezifiziert */ { // ranges::iter_move inline constexpr /* nicht spezifiziert */ iter_move = /* nicht spezifiziert */; // ranges::iter_swap inline constexpr /* nicht spezifiziert */ iter_swap = /* nicht spezifiziert */; } } template</* dereferenceable */ T> requires requires(T& t) { { ranges::iter_move(t) } -> /* kann-referenziert-werden */; } using iter_rvalue_reference_t = decltype(ranges::iter_move(declval<T&>())); // Iterator-Konzepte // Konzept indirectly_readable template<class In> concept indirectly_readable = /* siehe Beschreibung */; template<indirectly_readable T> using iter_common_reference_t = common_reference_t<iter_reference_t<T>, iter_value_t<T>&>; // Konzept indirectly_writable template<class Out, class T> concept indirectly_writable = /* siehe Beschreibung */; // Konzept weakly_incrementable template<class I> concept weakly_incrementable = /* siehe Beschreibung */; // Konzept inkrementierbar template<class I> concept incrementable = /* siehe Beschreibung */; // Konzept input_or_output_iterator template<class I> concept input_or_output_iterator = /* siehe Beschreibung */; // Konzept sentinel_for template<class S, class I> concept sentinel_for = /* siehe Beschreibung */; // Konzept sized_sentinel_for template<class S, class I> inline constexpr bool disable_sized_sentinel_for = false; template<class S, class I> concept sized_sentinel_for = /* siehe Beschreibung */; // Konzept input_iterator template<class I> concept input_iterator = /* siehe Beschreibung */; // Konzept output_iterator template<class I, class T> concept output_iterator = /* siehe Beschreibung */; // Konzept Forward-Iterator template<class I> concept forward_iterator = /* siehe Beschreibung */; // Konzept bidirectional_iterator template<class I> concept bidirectional_iterator = /* siehe Beschreibung */; // Konzept random_access_iterator template<class I> concept random_access_iterator = /* siehe Beschreibung */; // Konzept contiguous_iterator template<class I> concept contiguous_iterator = /* siehe Beschreibung */; // indirekte Aufrufbarkeitsanforderungen // indirekte Aufrufbare template<class F, class I> concept indirectly_unary_invocable = /* siehe Beschreibung */; template<class F, class I> concept indirectly_regular_unary_invocable = /* siehe Beschreibung */; template<class F, class I> concept indirect_unary_predicate = /* siehe Beschreibung */; template<class F, class I1, class I2> concept indirect_binary_predicate = /* siehe Beschreibung */; template<class F, class I1, class I2 = I1> concept indirect_equivalence_relation = /* siehe Beschreibung */; template<class F, class I1, class I2 = I1> concept indirect_strict_weak_order = /* siehe Beschreibung */; template<class F, class... Ist> requires (indirectly_readable<Is> && ...) && invocable<F, iter_reference_t<Is>...> using indirect_result_t = invoke_result_t<F, iter_reference_t<Is>...>; // projiziert template<indirectly_readable I, indirectly_regular_unary_invocable<I> Proj> using projected = /* siehe Beschreibung */; template<indirectly_readable I, indirectly_regular_unary_invocable<I> Proj> using projected_value_t = remove_cvref_t<invoke_result_t<Proj&, iter_value_t<I>&>>; // allgemeine Algorithmusanforderungen // Konzept indirectly_movable template<class In, class Out> concept indirectly_movable = /* siehe Beschreibung */; template<class In, class Out> concept indirectly_movable_storable = /* siehe Beschreibung */; // Konzept indirectly_copyable template<class In, class Out> concept indirectly_copyable = /* siehe Beschreibung */; template<class In, class Out> concept indirectly_copyable_storable = /* siehe Beschreibung */; // Konzept indirectly_swappable template<class I1, class I2 = I1> concept indirectly_swappable = /* siehe Beschreibung */; // Konzept indirectly_comparable template<class I1, class I2, class R, class P1 = identity, class P2 = identity> concept indirectly_comparable = /* siehe Beschreibung */; // Konzept permutable template<class I> concept permutable = /* siehe Beschreibung */; // Konzept mergeable template<class I1, class I2, class Out, class R = ranges::less, class P1 = identity, class P2 = identity> concept mergeable = /* siehe Beschreibung */; // Konzept sortierbar template<class I, class R = ranges::less, class P = identity> concept sortable = /* siehe Beschreibung */; // primitive Datentypen // Iterator-Tags struct input_iterator_tag { }; struct output_iterator_tag { }; struct forward_iterator_tag: public input_iterator_tag { }; struct bidirectional_iterator_tag: public forward_iterator_tag { }; struct random_access_iterator_tag: public bidirectional_iterator_tag { }; struct contiguous_iterator_tag: public random_access_iterator_tag { }; // Iterator-Operationen template<class InputIt, class Distance> constexpr void advance(InputIt& i, Distance n); template<class InputIt> constexpr typename iterator_traits<InputIt>::difference_type distance(InputIt first, InputIt last); template<class InputIt> constexpr InputIt next(InputIt x, typename iterator_traits<InputIt>::difference_type n = 1); template<class BidirIt> constexpr BidirIt prev(BidirIt x, typename iterator_traits<BidirIt>::difference_type n = 1); // Bereichsiterator-Operationen namespace ranges { // ranges::advance template<input_or_output_iterator I> constexpr void advance(I& i, iter_difference_t<I> n); template<input_or_output_iterator I, sentinel_for<I> S> constexpr void advance(I& i, S bound); template<input_or_output_iterator I, sentinel_for<I> S> constexpr iter_difference_t<I> advance(I& i, iter_difference_t<I> n, S bound); // ranges::distance template<class I, sentinel_for<I> S> requires (!sized_sentinel_for<S, I>) constexpr iter_difference_t<I> distance(I first, S last); template<class I, sized_sentinel_for<decay_t<I>> S> constexpr iter_difference_t<decay_t<I>> distance(I&& first, S last); template<range R> constexpr range_difference_t<R> distance(R&& r); // ranges::next template<input_or_output_iterator I> constexpr I next(I x); template<input_or_output_iterator I> constexpr I next(I x, iter_difference_t<I> n); template<input_or_output_iterator I, sentinel_for<I> S> constexpr I next(I x, S bound); template<input_or_output_iterator I, sentinel_for<I> S> constexpr I next(I x, iter_difference_t<I> n, S bound); // ranges::prev template<bidirectional_iterator I> constexpr I prev(I x); template<bidirectional_iterator I> constexpr I prev(I x, iter_difference_t<I> n); template<bidirectional_iterator I> constexpr I prev(I x, iter_difference_t<I> n, I bound); } // vordefinierte Iteratoren und Sentinel // Reverse-Iteratoren template<class It> class reverse_iterator; template<class It1, class It2> constexpr bool operator==(const reverse_iterator<It1>& x, const reverse_iterator<It2>& y); template<class It1, class It2> constexpr bool operator!=(const reverse_iterator<It1>& x, const reverse_iterator<It2>& y); template<class It1, class It2> constexpr bool operator<(const reverse_iterator<It1>& x, const reverse_iterator<It2>& y); template<class It1, class It2> constexpr bool operator>(const reverse_iterator<It1>& x, const reverse_iterator<It2>& y); template<class It1, class It2> constexpr bool operator<=(const reverse_iterator<It1>& x, const reverse_iterator<It2>& y); template<class It1, class It2> constexpr bool operator>=(const reverse_iterator<It1>& x, const reverse_iterator<It2>& y); template<class It1, three_way_comparable_with<It1> It2> constexpr compare_three_way_result_t<It1, It2> operator<=>(const reverse_iterator<It1>& x, const reverse_iterator<It2>& y); template<class It1, class It2> constexpr auto operator-(const reverse_iterator<It1>& x, const reverse_iterator<It2>& y) -> decltype(y.base() - x.base()); template<class It> constexpr reverse_iterator<It> operator+(iter_difference_t<It> n, const reverse_iterator<It>& x); template<class It> constexpr reverse_iterator<It> make_reverse_iterator(It i); template<class It1, class It2> requires (!sized_sentinel_for<It1, It2>) inline constexpr bool disable_sized_sentinel_for<reverse_iterator<It1>, reverse_iterator<It2>> = true; // Insert-Iteratoren template<class Container> class back_insert_iterator; template<class Container> constexpr back_insert_iterator<Container> back_inserter(Container& x); template<class Container> class front_insert_iterator; template<class Container> constexpr front_insert_iterator<Container> front_inserter(Container& x); template<class Container> class insert_iterator; template<class Container> constexpr insert_iterator<Container> inserter(Container& x, ranges::iterator_t<Container> i); // Iteratoren und Sentinels verschieben template<class It> class move_iterator; template<class It1, class It2> constexpr bool operator==(const move_iterator<It1>& x, const move_iterator<It2>& y); template<class It1, class It2> constexpr bool operator<(const move_iterator<It1>& x, const move_iterator<It2>& y); template<class It1, class It2> constexpr bool operator>(const move_iterator<It1>& x, const move_iterator<It2>& y); template<class It1, class It2> constexpr bool operator<=(const move_iterator<It1>& x, const move_iterator<It2>& y); template<class It1, class It2> constexpr bool operator>=(const move_iterator<It1>& x, const move_iterator<It2>& y); template<class It1, three_way_comparable_with<It1> It2> constexpr compare_three_way_result_t<It1, It2> operator<=>(const move_iterator<It1>& x, const move_iterator<It2>& y); template<class It1, class It2> constexpr auto operator-(const move_iterator<It1>& x, const move_iterator<It2>& y) -> decltype(x.base() - y.base()); template<class It> constexpr move_iterator<It> operator+(iter_difference_t<It> n, const move_iterator<It>& x); template<class It> constexpr move_iterator<It> make_move_iterator(It i); template<semiregular S> class move_sentinel; // allgemeine Iteratoren template<input_or_output_iterator I, sentinel_for<I> S> requires (!same_as<I, S> && copyable<I>) class common_iterator; template<class I, class S> struct incrementable_traits<common_iterator<I, S>>; template<input_iterator I, class S> struct iterator_traits<common_iterator<I, S>>; // Standard-Sentinel struct default_sentinel_t; inline constexpr default_sentinel_t default_sentinel{}; // gezählte Iteratoren template<input_or_output_iterator I> class counted_iterator; template<input_iterator I> requires /* siehe Beschreibung */ struct iterator_traits<counted_iterator<I>>; // unerreichbarer Wächter struct unreachable_sentinel_t; inline constexpr unreachable_sentinel_t unreachable_sentinel{}; // Stream-Iteratoren template<class T, class CharT = char, class Traits = char_traits<CharT>, class Distance = ptrdiff_t> class istream_iterator; template<class T, class CharT, class Traits, class Distance> bool operator==(const istream_iterator<T, CharT, Traits, Distance>& x, const istream_iterator<T, CharT, Traits, Distance>& y); template<class T, class CharT = char, class traits = char_traits<CharT>> class ostream_iterator; template<class CharT, class Traits = char_traits<CharT>> class istreambuf_iterator; template<class CharT, class Traits> bool operator==(const istreambuf_iterator<CharT, Traits>& a, const istreambuf_iterator<CharT, Traits>& b); template<class CharT, class Traits = char_traits<CharT>> class ostreambuf_iterator; // Bereichszugriff template<class C> constexpr auto begin(C& c) -> decltype(c.begin()); template<class C> constexpr auto begin(const C& c) -> decltype(c.begin()); template<class C> constexpr auto end(C& c) -> decltype(c.end()); template<class C> constexpr auto end(const C& c) -> decltype(c.end()); template<class T, size_t N> constexpr T* begin(T (&a)[N]) noexcept; template<class T, size_t N> constexpr T* end(T (&a)[N]) noexcept; template<class C> constexpr auto cbegin(const C& c) noexcept(noexcept(std::begin(c))) -> decltype(std::begin(c)); template<class C> constexpr auto cend(const C& c) noexcept(noexcept(std::end(c))) -> decltype(std::end(c)); template<class C> constexpr auto rbegin(C& c) -> decltype(c.rbegin()); template<class C> constexpr auto rbegin(const C& c) -> decltype(c.rbegin()); template<class C> constexpr auto rend(C& c) -> decltype(c.rend()); template<class C> constexpr auto rend(const C& c) -> decltype(c.rend()); template<class T, size_t N> constexpr reverse_iterator<T*> rbegin(T (&a)[N]); template<class T, size_t N> constexpr reverse_iterator<T*> rend(T (&a)[N]); template<class E> constexpr reverse_iterator<const E*> rbegin(initializer_list<E> il); template<class E> constexpr reverse_iterator<const E*> rend(initializer_list<E> il); template<class C> constexpr auto crbegin(const C& c) -> decltype(std::rbegin(c)); template<class C> constexpr auto crend(const C& c) -> decltype(std::rend(c)); template<class C> constexpr auto size(const C& c) -> decltype(c.size()); template<class T, size_t N> constexpr size_t size(const T (&a)[N]) noexcept; template<class C> constexpr auto ssize(const C& c) -> common_type_t<ptrdiff_t, make_signed_t<decltype(c.size())>>; template<class T, ptrdiff_t N> constexpr ptrdiff_t ssize(const T (&a)[N]) noexcept; template<class C> constexpr auto empty(const C& c) -> decltype(c.empty()); template<class T, size_t N> constexpr bool empty(const T (&a)[N]) noexcept; template<class E> constexpr bool empty(initializer_list<E> il) noexcept; template<class C> constexpr auto data(C& c) -> decltype(c.data()); template<class C> constexpr auto data(const C& c) -> decltype(c.data()); template<class T, size_t N> constexpr T* data(T (&a)[N]) noexcept; template<class E> constexpr const E* data(initializer_list<E> il) noexcept; }
Konzept
indirectly_readable
namespace std { template<class In> concept /*indirectlyReadableImpl*/ = // nur zur Darstellung requires(const In in) { typename iter_value_t<In>; typename iter_reference_t<In>; typename iter_rvalue_reference_t<In>; { *in } -> same_as<iter_reference_t<In>> { iter_move(in) } -> same_as<iter_rvalue_reference_t<In>> } && common_reference_with<iter_reference_t<In>&&, iter_value_t<In>&> && common_reference_with<iter_reference_t<In>&&, iter_rvalue_reference_t<In>&&> && common_reference_with<iter_rvalue_reference_t<In>&&, const iter_value_t<In>&>; template<class In> concept indirectly_readable = /*indirectlyReadableImpl*/<remove_cvref_t<In>> }
Konzept
indirectly_writable
namespace std { template<class Out, class T> concept indirectly_writable = requires(Out&& o, T&& t) { *o = std::forward<T>(t); // nicht erforderlich, gleichheitserhaltend zu sein *std::forward<Out>(o) = std::forward<T>(t); // nicht erforderlich, gleichheitserhaltend zu sein const_cast<const iter_reference_t<Out>&&>(*o) = std::forward<T>(t); // nicht erforderlich, gleichheitserhaltend zu sein const_cast<const iter_reference_t<Out>&&>(*std::forward<Out>(o)) = std::forward<T>(t); // nicht erforderlich, gleichheitserhaltend zu sein }; }
Konzept
weakly_incrementable
namespace std { template<class T> inline constexpr bool /*is_integer_like*/ = /* siehe Beschreibung */; // nur zur Darstellung template<class T> inline constexpr bool /*is_signed_integer_like*/ = // nur zur Darstellung /* siehe Beschreibung */; template<class I> concept weakly_incrementable = default_initializable<I> && movable<I> && requires(I i) { typename iter_difference_t<I>; requires /*is_signed_integer_like*/<iter_difference_t<I>>; { ++i } -> same_as<I&>; // muss nicht gleichheitserhaltend sein i++; // muss nicht gleichheitserhaltend sein }; }
Konzept
incrementable
namespace std { template<class I> concept incrementable = regular<I> && weakly_incrementable<I> && requires(I i) { { i++ } -> same_as<I>; }; }
Konzept
input_or_output_iterator
namespace std { template<class I> concept input_or_output_iterator = requires(I i) { { *i } -> can-reference; } && weakly_incrementable<I>; }
Konzept
sentinel_for
namespace std { template<class S, class I> concept sentinel_for = semiregular<S> && input_or_output_iterator<I> && /*WeaklyEqualityComparableWith*/<S, I>; }
Konzept
sized_sentinel_for
namespace std { template<class S, class I> concept sized_sentinel_for = sentinel_for<S, I> && !disable_sized_sentinel<remove_cv_t<S>, remove_cv_t<I>> && requires(const I& i, const S& s) { { s - i } -> same_as<iter_difference_t<I>>; { i - s } -> same_as<iter_difference_t<I>>; }; }
` Tags wurde gemäß den Anweisungen nicht übersetzt, da es sich um C++-Code handelt. Die HTML-Struktur und Formatierung wurden vollständig beibehalten.
Konzept
input_iterator
namespace std { template<class I> concept input_iterator = input_or_output_iterator<I> && indirectly_readable<I> && requires { typename /* ITER_CONCEPT */(I); } && derived_from</* ITER_CONCEPT */(I), input_iterator_tag>; }
` und `` Tags wurde gemäß den Anweisungen nicht übersetzt, da es sich um C++-Code handelt. Die HTML-Struktur und Attribute wurden ebenfalls unverändert beibehalten.
Konzept
output_iterator
namespace std { template<class I, class T> concept output_iterator = input_or_output_iterator<I> && indirectly_writable<I, T> && requires(I i, T&& t) { *i++ = std::forward<T>(t); // nicht erforderlich, gleichheitserhaltend zu sein }; }
Konzept
forward_iterator
namespace std { template<class I> concept forward_iterator = input_iterator<I> && derived_from</* ITER_CONCEPT */(I), forward_iterator_tag> && incrementable<I> && sentinel_for<I, I>; }
Konzept
bidirectional_iterator
namespace std { template<class I> concept bidirectional_iterator = forward_iterator<I> && derived_from</* ITER_CONCEPT */(I), bidirectional_iterator_tag> && requires(I i) { { --i } -> same_as<I&>; { i-- } -> same_as<I>; }; }
Konzept
random_access_iterator
namespace std { template<class I> concept random_access_iterator = bidirectional_iterator<I> && derived_from</* ITER_CONCEPT */(I), random_access_iterator_tag> && totally_ordered<I> && sized_sentinel_for<I, I> && requires(I i, const I j, const iter_difference_t<I> n) { { i += n } -> same_as<I&>; { j + n } -> same_as<I>; { n + j } -> same_as<I>; { i -= n } -> same_as<I&>; { j - n } -> same_as<I>; { j[n] } -> same_as<iter_reference_t<I>>; }; }
Konzept
contiguous_iterator
namespace std { template<class I> concept contiguous_iterator = random_access_iterator<I> && derived_from</* ITER_CONCEPT */(I), contiguous_iterator_tag> && is_lvalue_reference_v<iter_reference_t<I>> && same_as<iter_value_t<I>, remove_cvref_t<iter_reference_t<I>>> && requires(const I& i) { { to_address(i) } -> same_as<add_pointer_t<iter_reference_t<I>>>; }; }
Konzept
indirectly_unary_invocable
namespace std { template<class F, class I> concept indirectly_unary_invocable = indirectly_readable<I> && copy_constructible<F> && invocable<F&, iter_value_t<I>&> && invocable<F&, iter_reference_t<I>> && common_reference_with< invoke_result_t<F&, iter_value_t<I>&>, invoke_result_t<F&, iter_reference_t<I>>>; }
Konzept
indirectly_regular_unary_invocable
namespace std { template<class F, class I> concept indirectly_regular_unary_invocable = indirectly_readable<I> && copy_constructible<F> && regular_invocable<F&, iter_value_t<I>&> && regular_invocable<F&, iter_reference_t<I>> && common_reference_with< invoke_result_t<F&, iter_value_t<I>&>, invoke_result_t<F&, iter_reference_t<I>>>; }
Konzept
indirect_unary_predicate
namespace std { template<class F, class I> concept indirect_unary_predicate = indirectly_readable<I> && copy_constructible<F> && predicate<F&, iter_value_t<I>&> && predicate<F&, iter_reference_t<I>>; }
Konzept
indirect_binary_predicate
namespace std { template<class F, class I1, class I2 = I1> concept indirect_binary_predicate = indirectly_readable<I1> && indirectly_readable<I2> && copy_constructible<F> && predicate<F&, iter_value_t<I1>&, iter_value_t<I2>&> && predicate<F&, iter_value_t<I1>&, iter_reference_t<I2>> && predicate<F&, iter_reference_t<I1>, iter_value_t<I2>&> && predicate<F&, iter_reference_t<I1>, iter_reference_t<I2>>; }
` und `` Tags wurde gemäß den Anweisungen nicht übersetzt, da es sich um C++-Code handelt. Die HTML-Struktur und Formatierung bleibt ebenfalls unverändert erhalten.
Konzept
indirect_equivalence_relation
namespace std { template<class F, class I1, class I2 = I1> concept indirect_equivalence_relation = indirectly_readable<I1> && indirectly_readable<I2> && copy_constructible<F> && equivalence_relation<F&, iter_value_t<I1>&, iter_value_t<I2>&> && equivalence_relation<F&, iter_value_t<I1>&, iter_reference_t<I2>> && equivalence_relation<F&, iter_reference_t<I1>, iter_value_t<I2>&> && equivalence_relation<F&, iter_reference_t<I1>, iter_reference_t<I2>>; }
Konzept
indirect_strict_weak_order
namespace std { template<class F, class I1, class I2 = I1> concept indirect_strict_weak_order = indirectly_readable<I1> && indirectly_readable<I2> && copy_constructible<F> && strict_weak_order<F&, iter_value_t<I1>&, iter_value_t<I2>&> && strict_weak_order<F&, iter_value_t<I1>&, iter_reference_t<I2>> && strict_weak_order<F&, iter_reference_t<I1>, iter_value_t<I2>&> && strict_weak_order<F&, iter_reference_t<I1>, iter_reference_t<I2>>; }
` und `` Tags wurde gemäß den Anweisungen nicht übersetzt, da es sich um C++-Code handelt. Die HTML-Struktur und alle Tags wurden ebenfalls unverändert beibehalten.
Konzept
indirectly_movable
namespace std { template<class In, class Out> concept indirectly_movable = indirectly_readable<In> && indirectly_writable<Out, iter_rvalue_reference_t<In>>; }
Konzept
indirectly_movable_storable
namespace std { template<class In, class Out> concept indirectly_movable_storable = indirectly_movable<In, Out> && indirectly_writable<Out, iter_value_t<In>> && movable<iter_value_t<In>> && constructible_from<iter_value_t<In>, iter_rvalue_reference_t<In>> && assignable_from<iter_value_t<In>&, iter_rvalue_reference_t<In>>; }
Konzept
indirectly_copyable
namespace std { template<class In, class Out> concept indirectly_copyable = indirectly_readable<In> && indirectly_writable<Out, iter_reference_t<In>>; }
Konzept
indirectly_copyable_storable
namespace std { template<class In, class Out> concept indirectly_copyable_storable = indirectly_copyable<In, Out> && indirectly_writable<Out, iter_value_t<In>&> && indirectly_writable<Out, const iter_value_t<In>&> && indirectly_writable<Out, iter_value_t<In>&&> && indirectly_writable<Out, const iter_value_t<In>&&> && copyable<iter_value_t<In>> && constructible_from<iter_value_t<In>, iter_reference_t<In>> && assignable_from<iter_value_t<In>&, iter_reference_t<In>>; }
` und `` Tags wurde gemäß den Anweisungen nicht übersetzt, da es sich um C++-spezifischen Code handelt. Die HTML-Struktur und alle Tags/Attribute wurden ebenfalls unverändert beibehalten.
Konzept
indirectly_swappable
namespace std { template<class I1, class I2 = I1> concept indirectly_swappable = indirectly_readable<I1> && indirectly_readable<I2> && requires(const I1 i1, const I2 i2) { ranges::iter_swap(i1, i1); ranges::iter_swap(i2, i2); ranges::iter_swap(i1, i2); ranges::iter_swap(i2, i1); }; }
Konzept
indirectly_comparable
Konzept
permutable
namespace std { template<class I> concept permutable = forward_iterator<I> && indirectly_movable_storable<I, I> && indirectly_swappable<I, I>; }
Konzept
mergeable
namespace std { template<class I1, class I2, class Out, class R = ranges::less, class P1 = identity, class P2 = identity> concept mergeable = input_iterator<I1> && input_iterator<I2> && weakly_incrementable<Out> && indirectly_copyable<I1, Out> && indirectly_copyable<I2, Out> && indirect_strict_weak_order<R, projected<I1, P1>, projected<I2, P2>>; }
Konzept
sortable
namespace std { template<class I, class R = ranges::less, class P = identity> concept sortable = permutable<I> && indirect_strict_weak_order<R, projected<I, P>>; }
Klassentemplate std::incrementable_traits
namespace std { template<class> struct incrementable_traits { }; template<class T> requires is_object_v<T> struct incrementable_traits<T*> { using difference_type = ptrdiff_t; }; template<class I> struct incrementable_traits<const I> : incrementable_traits<I> { }; template<class T> requires requires { typename T::difference_type; } struct incrementable_traits<T> { using difference_type = typename T::difference_type; }; template<class T> requires (!requires { typename T::difference_type; } && requires(const T& a, const T& b) { { a - b } -> integral; }) struct incrementable_traits<T> { using difference_type = make_signed_t<decltype(declval<T>() - declval<T>())>; }; template<class T> using iter_difference_t = /* siehe Beschreibung */; }
Klassentemplate std::indirectly_readable_traits
namespace std { template<class> struct /*cond_value_type*/ { }; // nur zur Darstellung template<class T> requires is_object_v<T> struct /*cond_value_type*/ { using value_type = remove_cv_t<T>; }; template<class> struct indirectly_readable_traits { }; template<class T> struct indirectly_readable_traits<T*> : /*cond_value_type*/<T> { }; template<class I> requires is_array_v<I> struct indirectly_readable_traits<I> { using value_type = remove_cv_t<remove_extent_t<I>>; }; template<class I> struct indirectly_readable_traits<const I> : indirectly_readable_traits<I> { }; template<class T> requires requires { typename T::value_type; } struct indirectly_readable_traits<T> : /*cond_value_type*/<typename T::value_type> { }; template<class T> requires requires { typename T::element_type; } struct indirectly_readable_traits<T> : /*cond_value_type*/<typename T::element_type> { }; }
Klassentemplate std::projected
namespace std { template<class I, class Proj> struct /*projected-impl*/ { // nur zur Darstellung struct /*type*/ { // nur zur Darstellung using value_type = remove_cvref_t<indirect_result_t<Proj&, I>>; using difference_type = iter_difference_t<I>; // nur vorhanden, wenn I // weakly_incrementable modelliert indirect_result_t<Proj&, I> operator*() const; // nicht definiert }; }; template<indirectly_readable I, indirectly_regular_unary_invocable<I> Proj> using projected = /*projected-impl*/<I, Proj>::/*type*/; }
Klassentemplate std::iterator_traits
namespace std { template<class I> struct iterator_traits { using iterator_category = /* siehe Beschreibung */; using value_type = /* siehe Beschreibung */; using difference_type = /* siehe Beschreibung */; using pointer = /* siehe Beschreibung */; using reference = /* siehe Beschreibung */; }; template<class T> requires is_object_v<T> struct iterator_traits<T*> { using iterator_concept = contiguous_iterator_tag; using iterator_category = random_access_iterator_tag; using value_type = remove_cv_t<T>; using difference_type = ptrdiff_t; using pointer = T*; using reference = T&; }; }
Iterator-Kategorien
namespace std { struct input_iterator_tag { }; struct output_iterator_tag { }; struct forward_iterator_tag: public input_iterator_tag { }; struct bidirectional_iterator_tag: public forward_iterator_tag { }; struct random_access_iterator_tag: public bidirectional_iterator_tag { }; struct contiguous_iterator_tag: public random_access_iterator_tag { }; }
Klassentemplate std::reverse_iterator
namespace std { template<class Iter> class reverse_iterator { public: using iterator_type = Iter; using iterator_concept = /* siehe Beschreibung */; using iterator_category = /* siehe Beschreibung */; using value_type = iter_value_t<Iter>; using difference_type = iter_difference_t<Iter>; using pointer = typename iterator_traits<Iter>::pointer; using reference = iter_reference_t<Iter>; constexpr reverse_iterator(); constexpr explicit reverse_iterator(Iter x); template<class U> constexpr reverse_iterator(const reverse_iterator<U>& u); template<class U> constexpr reverse_iterator& operator=(const reverse_iterator<U>& u); constexpr Iter base() const; constexpr reference operator*() const; constexpr pointer operator->() const requires /* siehe Beschreibung */; constexpr reverse_iterator& operator++(); constexpr reverse_iterator operator++(int); constexpr reverse_iterator& operator--(); constexpr reverse_iterator operator--(int); constexpr reverse_iterator operator+ (difference_type n) const; constexpr reverse_iterator& operator+=(difference_type n); constexpr reverse_iterator operator- (difference_type n) const; constexpr reverse_iterator& operator-=(difference_type n); constexpr /* nicht spezifiziert */ operator[](difference_type n) const; friend constexpr iter_rvalue_reference_t<Iter> iter_move(const reverse_iterator& i) noexcept(/* siehe Beschreibung */); template<indirectly_swappable<Iter> Iter2> friend constexpr void iter_swap(const reverse_iterator& x, const reverse_iterator<Iter2>& y) noexcept(/* siehe Beschreibung */); protected: Iter current; }; }
Klassentemplate std::back_insert_iterator
namespace std { template<class Container> class back_insert_iterator { protected: Container* container = nullptr; public: using iterator_category = output_iterator_tag; using value_type = void; using difference_type = ptrdiff_t; using pointer = void; using reference = void; using container_type = Container; constexpr back_insert_iterator() noexcept = default; constexpr explicit back_insert_iterator(Container& x); constexpr back_insert_iterator& operator=(const typename Container::value_type& value); constexpr back_insert_iterator& operator=(typename Container::value_type&& value); constexpr back_insert_iterator& operator*(); constexpr back_insert_iterator& operator++(); constexpr back_insert_iterator operator++(int); }; }
Klassentemplate std::front_insert_iterator
namespace std { template<class Container> class front_insert_iterator { protected: Container* container = nullptr; public: using iterator_category = output_iterator_tag; using value_type = void; using difference_type = ptrdiff_t; using pointer = void; using reference = void; using container_type = Container; constexpr front_insert_iterator(Container& x) noexcept = default; constexpr explicit front_insert_iterator(Container& x); constexpr front_insert_iterator& operator=(const typename Container::value_type& value); constexpr front_insert_iterator& operator=(typename Container::value_type&& value); constexpr front_insert_iterator& operator*(); constexpr front_insert_iterator& operator++(); constexpr front_insert_iterator operator++(int); }; }
Klassentemplate std::insert_iterator
namespace std { template<class Container> class insert_iterator { protected: Container* container = nullptr; ranges::iterator_t<Container> iter = ranges::iterator_t<Container>(); public: using iterator_category = output_iterator_tag; using value_type = void; using difference_type = ptrdiff_t; using pointer = void; using reference = void; using container_type = Container; insert_iterator() = default; constexpr insert_iterator(Container& x, ranges::iterator_t<Container> i); constexpr insert_iterator& operator=(const typename Container::value_type& value); constexpr insert_iterator& operator=(typename Container::value_type&& value); constexpr insert_iterator& operator*(); constexpr insert_iterator& operator++(); constexpr insert_iterator& operator++(int); }; }
Klassentemplate std::move_iterator
namespace std { template<class Iter> class move_iterator { public: using iterator_type = Iter; using iterator_concept = /* siehe Beschreibung */; using iterator_category = /* siehe Beschreibung */; using value_type = iter_value_t<Iter>; using difference_type = iter_difference_t<Iter>; using pointer = Iter; using reference = iter_rvalue_reference_t<Iter>; constexpr move_iterator(); constexpr explicit move_iterator(Iter i); template<class U> constexpr move_iterator(const move_iterator<U>& u); template<class U> constexpr move_iterator& operator=(const move_iterator<U>& u); constexpr iterator_type base() const &; constexpr iterator_type base() &&; constexpr reference operator*() const; constexpr pointer operator->() const; constexpr move_iterator& operator++(); constexpr auto operator++(int); constexpr move_iterator& operator--(); constexpr move_iterator operator--(int); constexpr move_iterator operator+(difference_type n) const; constexpr move_iterator& operator+=(difference_type n); constexpr move_iterator operator-(difference_type n) const; constexpr move_iterator& operator-=(difference_type n); constexpr reference operator[](difference_type n) const; template<sentinel_for<Iter> S> friend constexpr bool operator==(const move_iterator& x, const move_sentinel<S>& y); template<sized_sentinel_for<Iter> S> friend constexpr iter_difference_t<Iter> operator-(const move_sentinel<S>& x, const move_iterator& y); template<sized_sentinel_for<Iter> S> friend constexpr iter_difference_t<Iter> operator-(const move_iterator& x, const move_sentinel<S>& y); friend constexpr iter_rvalue_reference_t<Iter> iter_move(const move_iterator& i) noexcept(noexcept(ranges::iter_move(i.current))); template<indirectly_swappable<Iter> Iter2> friend constexpr void iter_swap(const move_iterator& x, const move_iterator<Iter2>& y) noexcept(noexcept(ranges::iter_swap(x.current, y.current))); private: Iter current; // nur zur Veranschaulichung }; }
Klassentemplate std::move_sentinel
namespace std { template<semiregular S> class move_sentinel { public: constexpr move_sentinel(); constexpr explicit move_sentinel(S s); template<class S2> requires convertible_to<const S2&, S> constexpr move_sentinel(const move_sentinel<S2>& s); template<class S2> requires assignable_from<S&, const S2&> constexpr move_sentinel& operator=(const move_sentinel<S2>& s); constexpr S base() const; private: S last; // nur zur Darstellung }; }
Klassentemplate std::common_iterator
namespace std { template<input_or_output_iterator I, sentinel_for<I> S> requires (!same_as<I, S> && copyable<I>) class common_iterator { public: constexpr common_iterator() = default; constexpr common_iterator(I i); constexpr common_iterator(S s); template<class I2, class S2> requires convertible_to<const I2&, I> && convertible_to<const S2&, S> constexpr common_iterator(const common_iterator<I2, S2>& x); template<class I2, class S2> requires convertible_to<const I2&, I> && convertible_to<const S2&, S> && assignable_from<I&, const I2&> && assignable_from<S&, const S2&> common_iterator& operator=(const common_iterator<I2, S2>& x); decltype(auto) operator*(); decltype(auto) operator*() const requires dereferenceable<const I>; decltype(auto) operator->() const requires /* siehe Beschreibung */; common_iterator& operator++(); decltype(auto) operator++(int); template<class I2, sentinel_for<I> S2> requires sentinel_for<S, I2> friend bool operator==( const common_iterator& x, const common_iterator<I2, S2>& y); template<class I2, sentinel_for<I> S2> requires sentinel_for<S, I2> && equality_comparable_with<I, I2> friend bool operator==( const common_iterator& x, const common_iterator<I2, S2>& y); template<sized_sentinel_for<I> I2, sized_sentinel_for<I> S2> requires sized_sentinel_for<S, I2> friend iter_difference_t<I2> operator-( const common_iterator& x, const common_iterator<I2, S2>& y); friend constexpr decltype(auto) iter_move(const common_iterator& i) noexcept(noexcept(ranges::iter_move(declval<const I&>()))) requires input_iterator<I>; template<indirectly_swappable<I> I2, class S2> friend void iter_swap(const common_iterator& x, const common_iterator<I2, S2>& y) noexcept(noexcept(ranges::iter_swap(declval<const I&>(), declval<const I2&>()))); private: variant<I, S> v_; // exposition only }; template<class I, class S> struct incrementable_traits<common_iterator<I, S>> { using difference_type = iter_difference_t<I>; }; template<input_iterator I, class S> struct iterator_traits<common_iterator<I, S>> { using iterator_concept = /* siehe Beschreibung */; using iterator_category = /* siehe Beschreibung */; using value_type = iter_value_t<I>; using difference_type = iter_difference_t<I>; using pointer = /* siehe Beschreibung */; using reference = iter_reference_t<I>; }; }
Klasse std::default_sentinel_t
namespace std { struct default_sentinel_t { }; }
Klassentemplate std::counted_iterator
namespace std { template<input_or_output_iterator I> class counted_iterator { public: using iterator_type = I; constexpr counted_iterator() = default; constexpr counted_iterator(I x, iter_difference_t<I> n); template<class I2> requires convertible_to<const I2&, I> constexpr counted_iterator(const counted_iterator<I2>& x); template<class I2> requires assignable_from<I&, const I2&> constexpr counted_iterator& operator=(const counted_iterator<I2>& x); constexpr I base() const & requires copy_constructible<I>; constexpr I base() &&; constexpr iter_difference_t<I> count() const noexcept; constexpr decltype(auto) operator*(); constexpr decltype(auto) operator*() const requires dereferenceable<const I>; constexpr auto operator->() const noexcept requires contiguous_iterator<I>; constexpr counted_iterator& operator++(); decltype(auto) operator++(int); constexpr counted_iterator operator++(int) requires forward_iterator<I>; constexpr counted_iterator& operator--() requires bidirectional_iterator<I>; constexpr counted_iterator operator--(int) requires bidirectional_iterator<I>; constexpr counted_iterator operator+(iter_difference_t<I> n) const requires random_access_iterator<I>; friend constexpr counted_iterator operator+( iter_difference_t<I> n, const counted_iterator& x) requires random_access_iterator<I>; constexpr counted_iterator& operator+=(iter_difference_t<I> n) requires random_access_iterator<I>; constexpr counted_iterator operator-(iter_difference_t<I> n) const requires random_access_iterator<I>; template<common_with<I> I2> friend constexpr iter_difference_t<I2> operator-( const counted_iterator& x, const counted_iterator<I2>& y); friend constexpr iter_difference_t<I> operator-( const counted_iterator& x, default_sentinel_t); friend constexpr iter_difference_t<I> operator-( default_sentinel_t, const counted_iterator& y); constexpr counted_iterator& operator-=(iter_difference_t<I> n) requires random_access_iterator<I>; constexpr decltype(auto) operator[](iter_difference_t<I> n) const requires random_access_iterator<I>; template<common_with<I> I2> friend constexpr bool operator==( const counted_iterator& x, const counted_iterator<I2>& y); friend constexpr bool operator==( const counted_iterator& x, default_sentinel_t); template<common_with<I> I2> friend constexpr strong_ordering operator<=>( const counted_iterator& x, const counted_iterator<I2>& y); friend constexpr decltype(auto) iter_move(const counted_iterator& i) noexcept(noexcept(ranges::iter_move(i.current))) requires input_iterator<I>; template<indirectly_swappable<I> I2> friend constexpr void iter_swap(const counted_iterator& x, const counted_iterator<I2>& y) noexcept(noexcept(ranges::iter_swap(x.current, y.current))); private: I current = I(); // exposition only iter_difference_t<I> length = 0; // exposition only }; template<input_iterator I> struct iterator_traits<counted_iterator<I>> : iterator_traits<I> { using pointer = void; }; }
Klasse std::unreachable_sentinel_t
namespace std { struct unreachable_sentinel_t { template<weakly_incrementable I> friend constexpr bool operator==(unreachable_sentinel_t, const I&) noexcept { return false; } }; }
Klassentemplate std::istream_iterator
namespace std { template<class T, class CharT = char, class Traits = char_traits<CharT>, class Distance = ptrdiff_t> class istream_iterator { public: using iterator_category = input_iterator_tag; using value_type = T; using difference_type = Distance; using pointer = const T*; using reference = const T&; using char_type = CharT; using traits_type = Traits; using istream_type = basic_istream<CharT, Traits>; constexpr istream_iterator(); constexpr istream_iterator(default_sentinel_t); istream_iterator(istream_type& s); istream_iterator(const istream_iterator& x) = default; ~istream_iterator() = default; istream_iterator& operator=(const istream_iterator&) = default; const T& operator*() const; const T* operator->() const; istream_iterator& operator++(); istream_iterator operator++(int); friend bool operator==(const istream_iterator& i, default_sentinel_t); private: basic_istream<CharT, Traits>* in_stream; // nur zur Darstellung T value; // nur zur Darstellung }; }
Klassentemplate std::ostream_iterator
namespace std { template<class T, class CharT = char, classTraits = char_traits<CharT>> class ostream_iterator { public: using iterator_category = output_iterator_tag; using value_type = void; using difference_type = ptrdiff_t; using pointer = void; using reference = void; using char_type = CharT; using traits_type = Traits; using ostream_type = basic_ostream<CharT, Traits>; constexpr ostreambuf_iterator() noexcept = default; ostream_iterator(ostream_type& s); ostream_iterator(ostream_type& s, const CharT* delimiter); ostream_iterator(const ostream_iterator& x); ~ostream_iterator(); ostream_iterator& operator=(const ostream_iterator&) = default; ostream_iterator& operator=(const T& value); ostream_iterator& operator*(); ostream_iterator& operator++(); ostream_iterator& operator++(int); private: basic_ostream<CharT, Traits>* out_stream = nullptr; // nur zur Darstellung const CharT* delim = nullptr; // nur zur Darstellung }; }
Klassentemplate std::istreambuf_iterator
namespace std { template<class CharT, class Traits = char_traits<CharT>> class istreambuf_iterator { public: using iterator_category = input_iterator_tag; using value_type = CharT; using difference_type = typename Traits::off_type; using pointer = /* nicht spezifiziert */; using reference = CharT; using char_type = CharT; using traits_type = Traits; using int_type = typename Traits::int_type; using streambuf_type = basic_streambuf<CharT, Traits>; using istream_type = basic_istream<CharT, Traits>; class proxy; // nur zur Darstellung constexpr istreambuf_iterator() noexcept; constexpr istreambuf_iterator(default_sentinel_t) noexcept; istreambuf_iterator(const istreambuf_iterator&) noexcept = default; ~istreambuf_iterator() = default; istreambuf_iterator(istream_type& s) noexcept; istreambuf_iterator(streambuf_type* s) noexcept; istreambuf_iterator(const proxy& p) noexcept; istreambuf_iterator& operator=(const istreambuf_iterator&) noexcept = default; CharT operator*() const; istreambuf_iterator& operator++(); proxy operator++(int); bool equal(const istreambuf_iterator& b) const; friend bool operator==(const istreambuf_iterator& i, default_sentinel_t s); private: streambuf_type* sbuf_; // nur zur Darstellung }; template<class CharT, class Traits> class istreambuf_iterator<CharT, Traits>::proxy { // nur zur Darstellung CharT keep_; basic_streambuf<CharT, Traits>* sbuf_; proxy(CharT c, basic_streambuf<CharT, Traits>* sbuf) : keep_(c), sbuf_(sbuf) { } public: CharT operator*() { return keep_; } }; }
Klassentemplate std::ostreambuf_iterator
namespace std { template<class CharT, class Traits = char_traits<CharT>> class ostreambuf_iterator { public: using iterator_category = output_iterator_tag; using value_type = void; using difference_type = ptrdiff_t; using pointer = void; using reference = void; using char_type = CharT; using traits_type = Traits; using streambuf_type = basic_streambuf<CharT, Traits>; using ostream_type = basic_ostream<CharT, Traits>; constexpr ostreambuf_iterator() noexcept = default; ostreambuf_iterator(ostream_type& s) noexcept; ostreambuf_iterator(streambuf_type* s) noexcept; ostreambuf_iterator& operator=(CharT c); ostreambuf_iterator& operator*(); ostreambuf_iterator& operator++(); ostreambuf_iterator& operator++(int); bool failed() const noexcept; private: streambuf_type* sbuf_ = nullptr; // nur zur Darstellung }; }
Klassentemplate std::iterator
namespace std { template<class Category, class T, class Distance = ptrdiff_t, class Pointer = T*, class Reference = T&> struct iterator { typedef Category iterator_category; typedef T value_type; typedef Distance difference_type; typedef Pointer pointer; typedef Reference reference; }; }
Fehlerberichte
Die folgenden verhaltensändernden Fehlerberichte wurden rückwirkend auf zuvor veröffentlichte C++-Standards angewendet.
| DR | Angewendet auf | Verhalten wie veröffentlicht | Korrigiertes Verhalten |
|---|---|---|---|
| LWG 349 | C++98 |
der nur zur Darstellung dienende Member
delim
von
std::ostream_iterator hatte den Typ const char * |
korrigiert zu const CharT * |