Standard library header <linalg> (C++26)
From cppreference.net
Dieser Header ist Teil der numeric Bibliothek.
Klassen |
||
|
Definiert in namespace
std::linalg
|
||
|
(C++26)
|
std::mdspan
Layout-Mapping-Strategie, die eine quadratische Matrix repräsentiert, die nur die Einträge in einem Dreieck in einem gepackten zusammenhängenden Format speichert
(Klassentemplate) |
|
|
(C++26)
|
std::mdspan
Zugriffspolitik, deren Referenz das Produkt eines festen Skalierungsfaktors und der Referenz des verschachtelten
std::mdspan
Zugriffsobjekts darstellt
(Klassentemplate) |
|
|
(C++26)
|
std::mdspan
Zugriffspolitik, deren Referenz die komplex Konjugierte der Referenz ihres verschachtelten
std::mdspan
Zugriffsrepräsentiert
(Klassentemplate) |
|
|
(C++26)
|
std::mdspan
Layout-Mapping-Strategie, die die beiden rechtesten Indizes, Extents und Strides einer beliebigen eindeutigen Layout-Mapping-Strategie vertauscht
(Klassentemplate) |
|
Tags |
||
|
Definiert in namespace
std::linalg
|
||
|
beschreiben die Reihenfolge der Elemente in einem
std::mdspan
mit
linalg::layout_blas_packed
Layout
(Tag) |
||
|
gibt an, ob Algorithmen und andere Nutzer einer Matrix auf das obere Dreieck oder untere Dreieck der Matrix zugreifen sollen
(Tag) |
||
|
gibt an, ob Algorithmen auf Diagonaleinträge der Matrix zugreifen sollen
(Tag) |
||
Funktionen |
||
|
Definiert in namespace
std::linalg
|
||
In-place-Transformationen |
||
|
(C++26)
|
gibt einen neuen schreibgeschützten
std::mdspan
zurück, berechnet durch das elementweise Produkt des Skalierungsfaktors und der entsprechenden Elemente des gegebenen
std::mdspan
(Funktionsschablone) |
|
|
(C++26)
|
gibt einen neuen schreibgeschützten
std::mdspan
zurück, dessen Elemente die komplex Konjugierten der entsprechenden Elemente des gegebenen
std::mdspan
sind
(Funktionstemplate) |
|
|
(C++26)
|
gibt einen neuen
std::mdspan
zurück, der die Transponierte der Eingabematrix durch den gegebenen
std::mdspan
darstellt
(Funktionstemplate) |
|
|
(C++26)
|
gibt eine konjugiert transponierte Ansicht eines Objekts zurück
(Funktionsschablone) |
|
BLAS 1-Funktionen |
||
|
(C++26)
|
erzeugt eine Ebenenrotation
(Funktionsschablone) |
|
|
(C++26)
|
wendet ebene Rotation auf Vektoren an
(Funktionsschablone) |
|
|
(C++26)
|
tauscht alle entsprechenden Elemente einer Matrix oder eines Vektors
(Funktionstemplate) |
|
|
(C++26)
|
überschreibt Matrix oder Vektor mit dem Ergebnis der elementweisen Multiplikation mit einem Skalar
(Funktionstemplate) |
|
|
(C++26)
|
kopiert Elemente einer Matrix oder eines Vektors in eine andere
(Funktionsschablone) |
|
|
(C++26)
|
addiert Vektoren oder Matrizen elementweise
(Funktions-Template) |
|
|
(C++26)
|
gibt das nichtkonjugierte Skalarprodukt zweier Vektoren zurück
(Funktionsschablone) |
|
|
(C++26)
|
gibt das konjugierte Skalarprodukt zweier Vektoren zurück
(Funktionstemplate) |
|
|
(C++26)
|
gibt skalierten Summe der Quadrate der Vektorelemente zurück
(Funktionsschablone) |
|
|
(C++26)
|
gibt die euklidische Norm eines Vektors zurück
(Funktionstemplate) |
|
|
(C++26)
|
gibt die Summe der Absolutwerte der Vektorelemente zurück
(Funktionsschablone) |
|
|
(C++26)
|
gibt den Index des maximalen Absolutwerts der Vektorelemente zurück
(Funktionsschablone) |
|
|
(C++26)
|
gibt die Frobenius-Norm einer Matrix zurück
(Funktionsschablone) |
|
|
(C++26)
|
gibt die Einsnorm einer Matrix zurück
(Funktionsschablone) |
|
|
(C++26)
|
gibt die Unendlichkeitsnorm einer Matrix zurück
(Funktionsschablone) |
|
BLAS 2-Funktionen |
||
|
(C++26)
|
berechnet Matrix-Vektor-Produkt
(Funktionstemplate) |
|
|
(C++26)
|
berechnet symmetrische Matrix-Vektor-Produkt
(Funktions-Template) |
|
|
(C++26)
|
berechnet Hermitesche Matrix-Vektor-Produkt
(Funktionstemplate) |
|
|
(C++26)
|
berechnet das Dreiecksmatrix-Vektor-Produkt
(Funktionsschablone) |
|
|
(C++26)
|
löst ein trianguläres lineares System
(Funktionsschablone) |
|
|
(C++26)
|
führt einen nichtsymmetrischen nichtkonjugierten Rang-1-Update einer Matrix durch
(Funktionsschablone) |
|
|
(C++26)
|
führt einen nichtsymmetrischen konjugierten Rang-1-Update einer Matrix durch
(Funktionsschablone) |
|
|
(C++26)
|
führt einen Rang-1-Update einer symmetrischen Matrix durch
(Funktions-Template) |
|
|
(C++26)
|
führt einen Rang-1-Update einer hermiteschen Matrix durch
(Funktionsschablone) |
|
|
(C++26)
|
führt einen Rang-2-Update einer hermiteschen Matrix durch
(Funktionsschablone) |
|
|
(C++26)
|
führt Rang-2-Update einer hermiteschen Matrix durch
(Funktionstemplate) |
|
BLAS-3-Funktionen |
||
|
(C++26)
|
berechnet Matrix-Matrix-Produkt
(Funktionsschablone) |
|
|
(C++26)
|
berechnet das symmetrische Matrix-Matrix-Produkt
(Funktionstemplate) |
|
|
(C++26)
|
berechnet das hermitesche Matrix-Matrix-Produkt
(Funktionsschablone) |
|
|
berechnet das Dreiecksmatrix-Matrix-Produkt
(Funktions-Template) |
||
|
(C++26)
|
führt einen Rang-k-Update einer symmetrischen Matrix durch
(Funktions-Template) |
|
|
(C++26)
|
führt einen Rang-k-Update einer hermiteschen Matrix durch
(Funktions-Template) |
|
|
(C++26)
|
führt einen Rang-2k-Update einer symmetrischen Matrix durch
(Funktionsschablone) |
|
|
(C++26)
|
führt einen Rang-2k-Update einer hermiteschen Matrix durch
(Funktionsschablone) |
|
|
löst mehrere Dreiecksmatrix-Linearsysteme
(Funktions-Template) |
||
Synopsis
namespace std::linalg { // Speicherreihenfolge-Tags struct column_major_t; inline constexpr column_major_t column_major; struct row_major_t; inline constexpr row_major_t row_major; // Dreiecksmarkierungen struct upper_triangle_t; inline constexpr upper_triangle_t upper_triangle; struct lower_triangle_t; inline constexpr lower_triangle_t lower_triangle; // diagonale Tags struct implicit_unit_diagonal_t; inline constexpr implicit_unit_diagonal_t implicit_unit_diagonal; struct explicit_diagonal_t; inline constexpr explicit_diagonal_t explicit_diagonal; // Klassentemplate layout_blas_packed template<class Triangle, class StorageOrder> class layout_blas_packed; // exposition-only concepts and traits template<class T> struct __is_mdspan; // exposition only template<class T> concept __in_vector = /* siehe Beschreibung */; // exposition only template<class T> concept __out_vector = /* siehe Beschreibung */; // exposition only template<class T> concept __inout_vector = /* siehe Beschreibung */; // exposition only template<class T> concept __in_matrix = /* siehe Beschreibung */; // exposition only template<class T> concept __out_matrix = /* siehe Beschreibung */; // exposition only template<class T> concept __inout_matrix = /* siehe Beschreibung */; // exposition only template<class T> concept __possibly_packed_inout_matrix = /* siehe Beschreibung */; // exposition only template<class T> concept __in_object = /* siehe Beschreibung */; // exposition only template<class T> concept __out_object = /* siehe Beschreibung */; // exposition only template<class T> concept __inout_object = /* siehe Beschreibung */; // exposition only // skalierte In-Place-Transformation template<class ScalingFactor, class Accessor> class scaled_accessor; template<class ScalingFactor, class ElementType, class Extents, class Layout, class Accessor> constexpr auto scaled(ScalingFactor scaling_factor, mdspan<ElementType, Extents, Layout, Accessor> x); // konjugierte In-Place-Transformation template<class Accessor> class conjugated_accessor; template<class ElementType, class Extents, class Layout, class Accessor> constexpr auto conjugated(mdspan<ElementType, Extents, Layout, Accessor> a); // transponierte In-Place-Transformation template<class Layout> class layout_transpose; template<class ElementType, class Extents, class Layout, class Accessor> constexpr auto transposed(mdspan<ElementType, Extents, Layout, Accessor> a); // konjugiert transponierte In-Place-Transformation template<class ElementType, class Extents, class Layout, class Accessor> constexpr auto conjugate_transposed(mdspan<ElementType, Extents, Layout, Accessor> a); // Algorithmen // Givens-Rotation berechnen template<class Real> struct setup_givens_rotation_result { Real c; Real s; Real r; }; template<class Real> struct setup_givens_rotation_result<complex<Real>> { Real c; complex<Real> s; complex<Real> r; }; template<class Real> setup_givens_rotation_result<Real> setup_givens_rotation(Real a, Real b) noexcept; template<class Real> setup_givens_rotation_result<complex<Real>> setup_givens_rotation(complex<Real> a, complex<Real> b) noexcept; // berechnete Givens-Rotation anwenden template<__inout_vector InOutVec1, __inout_vector InOutVec2, class Real> void apply_givens_rotation(InOutVec1 x, InOutVec2 y, Real c, Real s); template<class ExecutionPolicy, __inout_vector InOutVec1, __inout_vector InOutVec2, class Real> void apply_givens_rotation(ExecutionPolicy&& exec, InOutVec1 x, InOutVec2 y, Real c, Real s); template<__inout_vector InOutVec1, __inout_vector InOutVec2, class Real> void apply_givens_rotation(InOutVec1 x, InOutVec2 y, Real c, complex<Real> s); template<class ExecutionPolicy, __inout_vector InOutVec1, __inout_vector InOutVec2, class Real> void apply_givens_rotation(ExecutionPolicy&& exec, InOutVec1 x, InOutVec2 y, Real c, complex<Real> s); // Elemente vertauschen template<__inout_object InOutObj1, __inout_object InOutObj2> void swap_elements(InOutObj1 x, InOutObj2 y); template<class ExecutionPolicy, __inout_object InOutObj1, __inout_object InOutObj2> void swap_elements(ExecutionPolicy&& exec, InOutObj1 x, InOutObj2 y); // Elemente mit Skalar multiplizieren template<class Scalar, __inout_object InOutObj> void scale(Scalar alpha, InOutObj x); template<class ExecutionPolicy, class Scalar, __inout_object InOutObj> void scale(ExecutionPolicy&& exec, Scalar alpha, InOutObj x); // Elemente kopieren template<__in_object InObj, __out_object OutObj> void copy(InObj x, OutObj y); template<class ExecutionPolicy, __in_object InObj, __out_object OutObj> void copy(ExecutionPolicy&& exec, InObj x, OutObj y); // elementweise Addition template<__in_object InObj1, __in_object InObj2, __out_object OutObj> void add(InObj1 x, InObj2 y, OutObj z); template<class ExecutionPolicy, __in_object InObj1, __in_object InObj2, __out_object OutObj> void add(ExecutionPolicy&& exec, InObj1 x, InObj2 y, OutObj z); // nichtkonjugiertes Skalarprodukt zweier Vektoren template<__in_vector InVec1, __in_vector InVec2, class Scalar> Scalar dot(InVec1 v1, InVec2 v2, Scalar init); template<class ExecutionPolicy, __in_vector InVec1, __in_vector InVec2, class Scalar> Scalar dot(ExecutionPolicy&& exec, InVec1 v1, InVec2 v2, Scalar init); template<__in_vector InVec1, __in_vector InVec2> auto dot(InVec1 v1, InVec2 v2) -> /* siehe Beschreibung */; template<class ExecutionPolicy, __in_vector InVec1, __in_vector InVec2> auto dot(ExecutionPolicy&& exec, InVec1 v1, InVec2 v2) -> /* siehe Beschreibung */; // konjugiertes Skalarprodukt zweier Vektoren template<__in_vector InVec1, __in_vector InVec2, class Scalar> Scalar dotc(InVec1 v1, InVec2 v2, Scalar init); template<class ExecutionPolicy, __in_vector InVec1, __in_vector InVec2, class Scalar> Scalar dotc(ExecutionPolicy&& exec, InVec1 v1, InVec2 v2, Scalar init); template<__in_vector InVec1, __in_vector InVec2> auto dotc(InVec1 v1, InVec2 v2) -> /* siehe Beschreibung */; template<class ExecutionPolicy, __in_vector InVec1, __in_vector InVec2> auto dotc(ExecutionPolicy&& exec, InVec1 v1, InVec2 v2) -> /* siehe Beschreibung */; // Skalierte Summe der Quadrate der Elemente eines Vektors template<class Scalar> struct sum_of_squares_result { Scalar scaling_factor; Scalar scaled_sum_of_squares; }; template<__in_vector InVec, class Scalar> sum_of_squares_result<Scalar> vector_sum_of_squares(InVec v, sum_of_squares_result<Scalar> init); template<class ExecutionPolicy, __in_vector InVec, class Scalar> sum_of_squares_result<Scalar> vector_sum_of_squares(ExecutionPolicy&& exec, InVec v, sum_of_squares_result<Scalar> init); // Euklidische Norm eines Vektors template<__in_vector InVec, class Scalar> Scalar vector_two_norm(InVec v, Scalar init); template<class ExecutionPolicy, __in_vector InVec, class Scalar> Scalar vector_two_norm(ExecutionPolicy&& exec, InVec v, Scalar init); template<__in_vector InVec> auto vector_two_norm(InVec v) -> /* siehe Beschreibung */; template<class ExecutionPolicy, __in_vector InVec> auto vector_two_norm(ExecutionPolicy&& exec, InVec v) -> /* siehe Beschreibung */; // Summe der absoluten Werte der Vektorelemente template<__in_vector InVec, class Scalar> Scalar vector_abs_sum(InVec v, Scalar init); template<class ExecutionPolicy, __in_vector InVec, class Scalar> Scalar vector_abs_sum(ExecutionPolicy&& exec, InVec v, Scalar init); template<__in_vector InVec> auto vector_abs_sum(InVec v) -> /* siehe Beschreibung */; template<class ExecutionPolicy, __in_vector InVec> auto vector_abs_sum(ExecutionPolicy&& exec, InVec v) -> /* siehe Beschreibung */; // Index des maximalen absoluten Werts der Vektorelemente template<__in_vector InVec> typename InVec::extents_type vector_idx_abs_max(InVec v); template<class ExecutionPolicy, __in_vector InVec> typename InVec::extents_type vector_idx_abs_max(ExecutionPolicy&& exec, InVec v); // Frobenius-Norm einer Matrix template<__in_matrix InMat, class Scalar> Scalar matrix_frob_norm(InMat A, Scalar init); template<class ExecutionPolicy, __in_matrix InMat, class Scalar> Scalar matrix_frob_norm(ExecutionPolicy&& exec, InMat A, Scalar init); template<__in_matrix InMat> auto matrix_frob_norm(InMat A) -> /* siehe Beschreibung */; template<class ExecutionPolicy, __in_matrix InMat> auto matrix_frob_norm(ExecutionPolicy&& exec, InMat A) -> /* siehe Beschreibung */; // Einernorm einer Matrix template<__in_matrix InMat, class Scalar> Scalar matrix_one_norm(InMat A, Scalar init); template<class ExecutionPolicy, __in_matrix InMat, class Scalar> Scalar matrix_one_norm(ExecutionPolicy&& exec, InMat A, Scalar init); template<__in_matrix InMat> auto matrix_one_norm(InMat A) -> /* siehe Beschreibung */; template<class ExecutionPolicy, __in_matrix InMat> auto matrix_one_norm(ExecutionPolicy&& exec, InMat A) -> /* siehe Beschreibung */; // Unendlichkeitsnorm einer Matrix template<__in_matrix InMat, class Scalar> Scalar matrix_inf_norm(InMat A, Scalar init); template<class ExecutionPolicy, __in_matrix InMat, class Scalar> Scalar matrix_inf_norm(ExecutionPolicy&& exec, InMat A, Scalar init); template<__in_matrix InMat> auto matrix_inf_norm(InMat A) -> /* siehe Beschreibung */; template<class ExecutionPolicy, __in_matrix InMat> auto matrix_inf_norm(ExecutionPolicy&& exec, InMat A) -> /* siehe Beschreibung */; // allgemeines Matrix-Vektor-Produkt template<__in_matrix InMat, __in_vector InVec, __out_vector OutVec> void matrix_vector_product(InMat A, InVec x, OutVec y); template<class ExecutionPolicy, __in_matrix InMat, __in_vector InVec, __out_vector OutVec> void matrix_vector_product(ExecutionPolicy&& exec, InMat A, InVec x, OutVec y); template<__in_matrix InMat, __in_vector InVec1, __in_vector InVec2, __out_vector OutVec> void matrix_vector_product(InMat A, InVec1 x, InVec2 y, OutVec z); template<class ExecutionPolicy, __in_matrix InMat, __in_vector InVec1, __in_vector InVec2, __out_vector OutVec> void matrix_vector_product(ExecutionPolicy&& exec, InMat A, InVec1 x, InVec2 y, OutVec z); // symmetrische Matrix-Vektor-Multiplikation template<__in_matrix InMat, class Triangle, __in_vector InVec, __out_vector OutVec> void symmetric_matrix_vector_product(InMat A, Triangle t, InVec x, OutVec y); template<class ExecutionPolicy, __in_matrix InMat, class Triangle, __in_vector InVec, __out_vector OutVec> void symmetric_matrix_vector_product(ExecutionPolicy&& exec, InMat A, Triangle t, InVec x, OutVec y); template<__in_matrix InMat, class Triangle, __in_vector InVec1, __in_vector InVec2, __out_vector OutVec> void symmetric_matrix_vector_product(InMat A, Triangle t, InVec1 x, InVec2 y, OutVec z); template<class ExecutionPolicy, __in_matrix InMat, class Triangle, __in_vector InVec1, __in_vector InVec2, __out_vector OutVec> void symmetric_matrix_vector_product(ExecutionPolicy&& exec, InMat A, Triangle t, InVec1 x, InVec2 y, OutVec z); // Hermitian Matrix-Vektor-Produkt template<__in_matrix InMat, class Triangle, __in_vector InVec, __out_vector OutVec> void hermitian_matrix_vector_product(InMat A, Triangle t, InVec x, OutVec y); template<class ExecutionPolicy, __in_matrix InMat, class Triangle, __in_vector InVec, __out_vector OutVec> void hermitian_matrix_vector_product(ExecutionPolicy&& exec, InMat A, Triangle t, InVec x, OutVec y); template<__in_matrix InMat, class Triangle, __in_vector InVec1, __in_vector InVec2, __out_vector OutVec> void hermitian_matrix_vector_product(InMat A, Triangle t, InVec1 x, InVec2 y, OutVec z); template<class ExecutionPolicy, __in_matrix InMat, class Triangle, __in_vector InVec1, __in_vector InVec2, __out_vector OutVec> void hermitian_matrix_vector_product(ExecutionPolicy&& exec, InMat A, Triangle t, InVec1 x, InVec2 y, OutVec z); // Dreiecksmatrix-Vektor-Produkt // Überschreiben des Dreiecksmatrix-Vektor-Produkts template<__in_matrix InMat, class Triangle, class DiagonalStorage, __in_vector InVec, __out_vector OutVec> void triangular_matrix_vector_product(InMat A, Triangle t, DiagonalStorage d, InVec x, OutVec y); template<class ExecutionPolicy, __in_matrix InMat, class Triangle, class DiagonalStorage, __in_vector InVec, __out_vector OutVec> void triangular_matrix_vector_product(ExecutionPolicy&& exec, InMat A, Triangle t, DiagonalStorage d, InVec x, OutVec y); // In-place Dreiecksmatrix-Vektor-Produkt template<__in_matrix InMat, class Triangle, class DiagonalStorage, __inout_vector InOutVec> void triangular_matrix_vector_product(InMat A, Triangle t, DiagonalStorage d, InOutVec y); template<class ExecutionPolicy, __in_matrix InMat, class Triangle, class DiagonalStorage, __inout_vector InOutVec> void triangular_matrix_vector_product(ExecutionPolicy&& exec, InMat A, Triangle t, DiagonalStorage d, InOutVec y); // Aktualisierung des Dreiecksmatrix-Vektor-Produkts template<__in_matrix InMat, class Triangle, class DiagonalStorage, __in_vector InVec1, __in_vector InVec2, __out_vector OutVec> void triangular_matrix_vector_product(InMat A, Triangle t, DiagonalStorage d, InVec1 x, InVec2 y, OutVec z); template<class ExecutionPolicy, __in_matrix InMat, class Triangle, class DiagonalStorage, __in_vector InVec1, __in_vector InVec2, __out_vector OutVec> void triangular_matrix_vector_product(ExecutionPolicy&& exec, InMat A, Triangle t, DiagonalStorage d, InVec1 x, InVec2 y, OutVec z); // Löse ein lineares Dreieckssystem, nicht an Ort und Stelle template<__in_matrix InMat, class Triangle, class DiagonalStorage, __in_vector InVec, __out_vector OutVec, class BinaryDivideOp> void triangular_matrix_vector_solve(InMat A, Triangle t, DiagonalStorage d, InVec b, OutVec x, BinaryDivideOp divide); template<class ExecutionPolicy, __in_matrix InMat, class Triangle, class DiagonalStorage, __in_vector InVec, __out_vector OutVec, class BinaryDivideOp> void triangular_matrix_vector_solve(ExecutionPolicy&& exec, InMat A, Triangle t, DiagonalStorage d, InVec b, OutVec x, BinaryDivideOp divide); template<__in_matrix InMat, class Triangle, class DiagonalStorage, __in_vector InVec, __out_vector OutVec> void triangular_matrix_vector_solve(InMat A, Triangle t, DiagonalStorage d, InVec b, OutVec x); template<class ExecutionPolicy, __in_matrix InMat, class Triangle, class DiagonalStorage, __in_vector InVec, __out_vector OutVec> void triangular_matrix_vector_solve(ExecutionPolicy&& exec, InMat A, Triangle t, DiagonalStorage d, InVec b, OutVec x); // Löse ein lineares Dreieckssystem, direkt an Ort und Stelle template<__in_matrix InMat, class Triangle, class DiagonalStorage, __inout_vector InOutVec, class BinaryDivideOp> void triangular_matrix_vector_solve(InMat A, Triangle t, DiagonalStorage d, InOutVec b, BinaryDivideOp divide); template<class ExecutionPolicy, __in_matrix InMat, class Triangle, class DiagonalStorage, __inout_vector InOutVec, class BinaryDivideOp> void triangular_matrix_vector_solve(ExecutionPolicy&& exec, InMat A, Triangle t, DiagonalStorage d, InOutVec b, BinaryDivideOp divide); template<__in_matrix InMat, class Triangle, class DiagonalStorage, __inout_vector InOutVec> void triangular_matrix_vector_solve(InMat A, Triangle t, DiagonalStorage d, InOutVec b); template<class ExecutionPolicy, __in_matrix InMat, class Triangle, class DiagonalStorage, __inout_vector InOutVec> void triangular_matrix_vector_solve(ExecutionPolicy&& exec, InMat A, Triangle t, DiagonalStorage d, InOutVec b); // nichtkonjugiertes Rang-1-Matrix-Update template<__in_vector InVec1, __in_vector InVec2, __inout_matrix InOutMat> void matrix_rank_1_update(InVec1 x, InVec2 y, InOutMat A); template<class ExecutionPolicy, __in_vector InVec1, __in_vector InVec2, __inout_matrix InOutMat> void matrix_rank_1_update(ExecutionPolicy&& exec, InVec1 x, InVec2 y, InOutMat A); // konjugiertes Rang-1-Matrix-Update template<__in_vector InVec1, __in_vector InVec2, __inout_matrix InOutMat> void matrix_rank_1_update_c(InVec1 x, InVec2 y, InOutMat A); template<class ExecutionPolicy, __in_vector InVec1, __in_vector InVec2, __inout_matrix InOutMat> void matrix_rank_1_update_c(ExecutionPolicy&& exec, InVec1 x, InVec2 y, InOutMat A); // symmetrische Rang-1-Matrix-Aktualisierung template<__in_vector InVec, __possibly_packed_inout_matrix InOutMat, class Triangle> void symmetric_matrix_rank_1_update(InVec x, InOutMat A, Triangle t); template<class ExecutionPolicy, __in_vector InVec, __possibly_packed_inout_matrix InOutMat, class Triangle> void symmetric_matrix_rank_1_update(ExecutionPolicy&& exec, InVec x, InOutMat A, Triangle t); template<class Scalar, __in_vector InVec, __possibly_packed_inout_matrix InOutMat, class Triangle> void symmetric_matrix_rank_1_update(Scalar alpha, InVec x, InOutMat A, Triangle t); template<class ExecutionPolicy, class Scalar, __in_vector InVec, __possibly_packed_inout_matrix InOutMat, class Triangle> void symmetric_matrix_rank_1_update(ExecutionPolicy&& exec, Scalar alpha, InVec x, InOutMat A, Triangle t); // Hermitian Rang-1-Matrix-Update template<__in_vector InVec, __possibly_packed_inout_matrix InOutMat, class Triangle> void hermitian_matrix_rank_1_update(InVec x, InOutMat A, Triangle t); template<class ExecutionPolicy, __in_vector InVec, __possibly_packed_inout_matrix InOutMat, class Triangle> void hermitian_matrix_rank_1_update(ExecutionPolicy&& exec, InVec x, InOutMat A, Triangle t); template<class Scalar, __in_vector InVec, __possibly_packed_inout_matrix InOutMat, class Triangle> void hermitian_matrix_rank_1_update(Scalar alpha, InVec x, InOutMat A, Triangle t); template<class ExecutionPolicy, class Scalar, __in_vector InVec, __possibly_packed_inout_matrix InOutMat, class Triangle> void hermitian_matrix_rank_1_update(ExecutionPolicy&& exec, Scalar alpha, InVec x, InOutMat A, Triangle t); // symmetrische Rang-2-Matrix-Aktualisierung template<__in_vector InVec1, __in_vector InVec2, __possibly_packed_inout_matrix InOutMat, class Triangle> void symmetric_matrix_rank_2_update(InVec1 x, InVec2 y, InOutMat A, Triangle t); template<class ExecutionPolicy, __in_vector InVec1, __in_vector InVec2, __possibly_packed_inout_matrix InOutMat, class Triangle> void symmetric_matrix_rank_2_update(ExecutionPolicy&& exec, InVec1 x, InVec2 y, InOutMat A, Triangle t); // Hermitian Rang-2-Matrix-Aktualisierung template<__in_vector InVec1, __in_vector InVec2, __possibly_packed_inout_matrix InOutMat, class Triangle> void hermitian_matrix_rank_2_update(InVec1 x, InVec2 y, InOutMat A, Triangle t); template<class ExecutionPolicy, __in_vector InVec1, __in_vector InVec2, __possibly_packed_inout_matrix InOutMat, class Triangle> void hermitian_matrix_rank_2_update(ExecutionPolicy&& exec, InVec1 x, InVec2 y, InOutMat A, Triangle t); // allgemeines Matrix-Matrix-Produkt template<__in_matrix InMat1, __in_matrix InMat2, __out_matrix OutMat> void matrix_product(InMat1 A, InMat2 B, OutMat C); template<class ExecutionPolicy, __in_matrix InMat1, __in_matrix InMat2, __out_matrix OutMat> void matrix_product(ExecutionPolicy&& exec, InMat1 A, InMat2 B, OutMat C); template<__in_matrix InMat1, __in_matrix InMat2, __in_matrix InMat3, __out_matrix OutMat> void matrix_product(InMat1 A, InMat2 B, InMat3 E, OutMat C); template<class ExecutionPolicy, __in_matrix InMat1, __in_matrix InMat2, __in_matrix InMat3, __out_matrix OutMat> void matrix_product(ExecutionPolicy&& exec, InMat1 A, InMat2 B, InMat3 E, OutMat C); // symmetrische Matrix-Matrix-Multiplikation // Überschreiben des symmetrischen Matrix-Matrix-Linksprodukts template<__in_matrix InMat1, class Triangle, __in_matrix InMat2, __out_matrix OutMat> void symmetric_matrix_product(InMat1 A, Triangle t, InMat2 B, OutMat C); template<class ExecutionPolicy, __in_matrix InMat1, class Triangle, __in_matrix InMat2, __out_matrix OutMat> void symmetric_matrix_product(ExecutionPolicy&& exec, InMat1 A, Triangle t, InMat2 B, OutMat C); // Überschreiben des symmetrischen Matrix-Matrix-Rechtsprodukts template<__in_matrix InMat1, __in_matrix InMat2, class Triangle, __out_matrix OutMat> void symmetric_matrix_product(InMat1 B, InMat2 A, Triangle t, OutMat C); template<class ExecutionPolicy, __in_matrix InMat1, __in_matrix InMat2, class Triangle, __out_matrix OutMat> void symmetric_matrix_product(ExecutionPolicy&& exec, InMat1 B, InMat2 A, Triangle t, OutMat C); // Aktualisierung des symmetrischen Matrix-Matrix-Linksprodukts template<__in_matrix InMat1, class Triangle, __in_matrix InMat2, __in_matrix InMat3, __out_matrix OutMat> void symmetric_matrix_product(InMat1 A, Triangle t, InMat2 B, InMat3 E, OutMat C); template<class ExecutionPolicy, __in_matrix InMat1, class Triangle, __in_matrix InMat2, __in_matrix InMat3, __out_matrix OutMat> void symmetric_matrix_product(ExecutionPolicy&& exec, InMat1 A, Triangle t, InMat2 B, InMat3 E, OutMat C); // Aktualisierung des symmetrischen Matrix-Matrix-Rechtsprodukts template<__in_matrix InMat1, __in_matrix InMat2, class Triangle, __in_matrix InMat3, __out_matrix OutMat> void symmetric_matrix_product(InMat1 B, InMat2 A, Triangle t, InMat3 E, OutMat C); template<class ExecutionPolicy, __in_matrix InMat1, __in_matrix InMat2, class Triangle, __in_matrix InMat3, __out_matrix OutMat> void symmetric_matrix_product(ExecutionPolicy&& exec, InMat1 B, InMat2 A, Triangle t, InMat3 E, OutMat C); // Hermitesche Matrix-Matrix-Multiplikation // Überschreiben des linksseitigen Matrix-Matrix-Produkts für hermitesche Matrizen template<__in_matrix InMat1, class Triangle, __in_matrix InMat2, __out_matrix OutMat> void hermitian_matrix_product(InMat1 A, Triangle t, InMat2 B, OutMat C); template<class ExecutionPolicy, __in_matrix InMat1, class Triangle, __in_matrix InMat2, __out_matrix OutMat> void hermitian_matrix_product(ExecutionPolicy&& exec, InMat1 A, Triangle t, InMat2 B, OutMat C); // Überschreiben des hermitischen Matrix-Matrix-Rechtsprodukts template<__in_matrix InMat1, __in_matrix InMat2, class Triangle, __out_matrix OutMat> void hermitian_matrix_product(InMat1 B, InMat2 A, Triangle t, OutMat C); template<class ExecutionPolicy, __in_matrix InMat1, __in_matrix InMat2, class Triangle, __out_matrix OutMat> void hermitian_matrix_product(ExecutionPolicy&& exec, InMat1 B, InMat2 A, Triangle t, OutMat C); // Aktualisierung des hermiteschen Matrix-Matrix-Linksprodukts template<__in_matrix InMat1, class Triangle, __in_matrix InMat2, __in_matrix InMat3, __out_matrix OutMat> void hermitian_matrix_product(InMat1 A, Triangle t, InMat2 B, InMat3 E, OutMat C); template<class ExecutionPolicy, __in_matrix InMat1, class Triangle, __in_matrix InMat2, __in_matrix InMat3, __out_matrix OutMat> void hermitian_matrix_product(ExecutionPolicy&& exec, InMat1 A, Triangle t, InMat2 B, InMat3 E, OutMat C); // Aktualisierung des hermiteschen Matrix-Matrix-Rechtsprodukts template<__in_matrix InMat1, __in_matrix InMat2, class Triangle, __in_matrix InMat3, __out_matrix OutMat> void hermitian_matrix_product(InMat1 B, InMat2 A, Triangle t, InMat3 E, OutMat C); template<class ExecutionPolicy, __in_matrix InMat1, __in_matrix InMat2, class Triangle, __in_matrix InMat3, __out_matrix OutMat> void hermitian_matrix_product(ExecutionPolicy&& exec, InMat1 B, InMat2 A, Triangle t, InMat3 E, OutMat C); // Dreiecksmatrix-Matrix-Produkt // Überschreiben des linken Matrix-Matrix-Produkts für Dreiecksmatrizen template<__in_matrix InMat1, class Triangle, class DiagonalStorage, __in_matrix InMat2, __out_matrix OutMat> void triangular_matrix_product(InMat1 A, Triangle t, DiagonalStorage d, InMat2 B, OutMat C); template<class ExecutionPolicy, __in_matrix InMat1, class Triangle, class DiagonalStorage, __in_matrix InMat2, __out_matrix OutMat> void triangular_matrix_product(ExecutionPolicy&& exec, InMat1 A, Triangle t, DiagonalStorage d, InMat2 B, OutMat C); template<__in_matrix InMat1, class Triangle, class DiagonalStorage, __inout_matrix InOutMat> void triangular_matrix_left_product(InMat1 A, Triangle t, DiagonalStorage d, InOutMat C); template<class ExecutionPolicy, __in_matrix InMat1, class Triangle, class DiagonalStorage, __inout_matrix InOutMat> void triangular_matrix_left_product(ExecutionPolicy&& exec, InMat1 A, Triangle t, DiagonalStorage d, InOutMat C); // Überschreiben des rechtseitigen Matrix-Matrix-Produkts für Dreiecksmatrizen template<__in_matrix InMat1, __in_matrix InMat2, class Triangle, class DiagonalStorage, __out_matrix OutMat> void triangular_matrix_product(InMat1 B, InMat2 A, Triangle t, DiagonalStorage d, OutMat C); template<class ExecutionPolicy, __in_matrix InMat1, __in_matrix InMat2, class Triangle, class DiagonalStorage, __out_matrix OutMat> void triangular_matrix_product(ExecutionPolicy&& exec, InMat1 B, InMat2 A, Triangle t, DiagonalStorage d, OutMat C); template<__in_matrix InMat1, class Triangle, class DiagonalStorage, __inout_matrix InOutMat> void triangular_matrix_right_product(InMat1 A, Triangle t, DiagonalStorage d, InOutMat C); template<class ExecutionPolicy, __in_matrix InMat1, class Triangle, class DiagonalStorage, __inout_matrix InOutMat> void triangular_matrix_right_product(ExecutionPolicy&& exec, InMat1 A, Triangle t, DiagonalStorage d, InOutMat C); // Aktualisierung des linksseitigen Matrix-Matrix-Produkts für Dreiecksmatrizen template<__in_matrix InMat1, class Triangle, class DiagonalStorage, __in_matrix InMat2, __in_matrix InMat3, __out_matrix OutMat> void triangular_matrix_product(InMat1 A, Triangle t, DiagonalStorage d, InMat2 B, InMat3 E, OutMat C); template<class ExecutionPolicy, __in_matrix InMat1, class Triangle, class DiagonalStorage, __in_matrix InMat2, __in_matrix InMat3, __out_matrix OutMat> void triangular_matrix_product(ExecutionPolicy&& exec, InMat1 A, Triangle t, DiagonalStorage d, InMat2 B, InMat3 E, OutMat C); // Aktualisierung des rechtseitigen Matrix-Matrix-Produkts für Dreiecksmatrizen template<__in_matrix InMat1, __in_matrix InMat2, class Triangle, class DiagonalStorage, __in_matrix InMat3, __out_matrix OutMat> void triangular_matrix_product(InMat1 B, InMat2 A, Triangle t, DiagonalStorage d, InMat3 E, OutMat C); template<class ExecutionPolicy, __in_matrix InMat1, __in_matrix InMat2, class Triangle, class DiagonalStorage, __in_matrix InMat3, __out_matrix OutMat> void triangular_matrix_product(ExecutionPolicy&& exec, InMat1 B, InMat2 A, Triangle t, DiagonalStorage d, InMat3 E, OutMat C); // Rang-k symmetrische Matrix-Aktualisierung template<class Scalar, __in_matrix InMat1, __possibly_packed_inout_matrix InOutMat, class Triangle> void symmetric_matrix_rank_k_update(Scalar alpha, InMat1 A, InOutMat C, Triangle t); template<class Scalar, class ExecutionPolicy, ___in_matrix InMat1, __possibly_packed_inout_matrix InOutMat, class Triangle> void symmetric_matrix_rank_k_update(ExecutionPolicy&& exec, Scalar alpha, InMat1 A, InOutMat C, Triangle t); template<__in_matrix InMat1, __possibly_packed_inout_matrix InOutMat, class Triangle> void symmetric_matrix_rank_k_update(InMat1 A, InOutMat C, Triangle t); template<class ExecutionPolicy, __in_matrix InMat1, __possibly_packed_inout_matrix InOutMat, class Triangle> void symmetric_matrix_rank_k_update(ExecutionPolicy&& exec, InMat1 A, InOutMat C, Triangle t); // Rang-k-Hermitesche-Matrix-Aktualisierung template<class Scalar, __in_matrix InMat1, __possibly_packed_inout_matrix InOutMat, class Triangle> void hermitian_matrix_rank_k_update(Scalar alpha, InMat1 A, InOutMat C, Triangle t); template<class ExecutionPolicy, class Scalar, __in_matrix InMat1, __possibly_packed_inout_matrix InOutMat, class Triangle void hermitian_matrix_rank_k_update(ExecutionPolicy&& exec, Scalar alpha, InMat1 A, InOutMat C, Triangle t); template<__in_matrix InMat1, __possibly_packed_inout_matrix InOutMat, class Triangle> void hermitian_matrix_rank_k_update(InMat1 A, InOutMat C, Triangle t); template<class ExecutionPolicy, __in_matrix InMat1, __possibly_packed_inout_matrix InOutMat, class Triangle> void hermitian_matrix_rank_k_update(ExecutionPolicy&& exec, InMat1 A, InOutMat C, Triangle t); // Rang-2k symmetrische Matrix-Aktualisierung template<__in_matrix InMat1, __in_matrix InMat2, __possibly_packed_inout_matrix InOutMat, class Triangle> void symmetric_matrix_rank_2k_update(InMat1 A, InMat2 B, InOutMat C, Triangle t); template<class ExecutionPolicy, __in_matrix InMat1, __in_matrix InMat2, __possibly_packed_inout_matrix InOutMat, class Triangle> void symmetric_matrix_rank_2k_update(ExecutionPolicy&& exec, InMat1 A, InMat2 B, InOutMat C, Triangle t); // Rang-2k Hermitesche Matrix-Aktualisierung template<__in_matrix InMat1, __in_matrix InMat2, __possibly_packed_inout_matrix InOutMat, class Triangle> void hermitian_matrix_rank_2k_update(InMat1 A, InMat2 B, InOutMat C, Triangle t); template<class ExecutionPolicy, __in_matrix InMat1, __in_matrix InMat2, __possibly_packed_inout_matrix InOutMat, class Triangle> void hermitian_matrix_rank_2k_update(ExecutionPolicy&& exec, InMat1 A, InMat2 B, InOutMat C, Triangle t); // mehrere dreieckige lineare Gleichungssysteme lösen // mit Dreiecksmatrix auf der linken Seite template<__in_matrix InMat1, class Triangle, class DiagonalStorage, __in_matrix InMat2, __out_matrix OutMat, class BinaryDivideOp> void triangular_matrix_matrix_left_solve(InMat1 A, Triangle t, DiagonalStorage d, InMat2 B, OutMat X, BinaryDivideOp divide); template<class ExecutionPolicy, __in_matrix InMat1, class Triangle, class DiagonalStorage, __in_matrix InMat2, __out_matrix OutMat, class BinaryDivideOp> void triangular_matrix_matrix_left_solve(ExecutionPolicy&& exec, InMat1 A, Triangle t, DiagonalStorage d, InMat2 B, OutMat X, BinaryDivideOp divide); template<__in_matrix InMat1, class Triangle, class DiagonalStorage, __inout_matrix InOutMat, class BinaryDivideOp> void triangular_matrix_matrix_left_solve(InMat1 A, Triangle t, DiagonalStorage d, InOutMat B, BinaryDivideOp divide); template<class ExecutionPolicy, __in_matrix InMat1, class Triangle, class DiagonalStorage, __inout_matrix InOutMat, class BinaryDivideOp> void triangular_matrix_matrix_left_solve(ExecutionPolicy&& exec, InMat1 A, Triangle t, DiagonalStorage d, InOutMat B, BinaryDivideOp divide); template<__in_matrix InMat1, class Triangle, class DiagonalStorage, __in_matrix InMat2, __out_matrix OutMat> void triangular_matrix_matrix_left_solve(InMat1 A, Triangle t, DiagonalStorage d, InMat2 B, OutMat X); template<class ExecutionPolicy, __in_matrix InMat1, class Triangle, class DiagonalStorage, __in_matrix InMat2, __out_matrix OutMat> void triangular_matrix_matrix_left_solve(ExecutionPolicy&& exec, InMat1 A, Triangle t, DiagonalStorage d, InMat2 B, OutMat X); template<__in_matrix InMat1, class Triangle, class DiagonalStorage, __inout_matrix InOutMat> void triangular_matrix_matrix_left_solve(InMat1 A, Triangle t, DiagonalStorage d, InOutMat B); template<class ExecutionPolicy, __in_matrix InMat1, class Triangle, class DiagonalStorage, __inout_matrix InOutMat> void triangular_matrix_matrix_left_solve(ExecutionPolicy&& exec, InMat1 A, Triangle t, DiagonalStorage d, InOutMat B); // mehrere dreieckige lineare Gleichungssysteme lösen // mit Dreiecksmatrix auf der rechten Seite template<__in_matrix InMat1, class Triangle, class DiagonalStorage, __in_matrix InMat2, __out_matrix OutMat, class BinaryDivideOp> void triangular_matrix_matrix_right_solve(InMat1 A, Triangle t, DiagonalStorage d, InMat2 B, OutMat X, BinaryDivideOp divide); template<class ExecutionPolicy, __in_matrix InMat1, class Triangle, class DiagonalStorage, __in_matrix InMat2, __out_matrix OutMat, class BinaryDivideOp> void triangular_matrix_matrix_right_solve(ExecutionPolicy&& exec, InMat1 A, Triangle t, DiagonalStorage d, InMat2 B, OutMat X, BinaryDivideOp divide); template<__in_matrix InMat1, class Triangle, class DiagonalStorage, __inout_matrix InOutMat, class BinaryDivideOp> void triangular_matrix_matrix_right_solve(InMat1 A, Triangle t, DiagonalStorage d, InOutMat B, BinaryDivideOp divide); template<class ExecutionPolicy, __in_matrix InMat1, class Triangle, class DiagonalStorage, __inout_matrix InOutMat, class BinaryDivideOp> void triangular_matrix_matrix_right_solve(ExecutionPolicy&& exec, InMat1 A, Triangle t, DiagonalStorage d, InOutMat B, BinaryDivideOp divide)); template<__in_matrix InMat1, class Triangle, class DiagonalStorage, __in_matrix InMat2, __out_matrix OutMat> void triangular_matrix_matrix_right_solve(InMat1 A, Triangle t, DiagonalStorage d, InMat2 B, OutMat X); template<class ExecutionPolicy, __in_matrix InMat1, class Triangle, class DiagonalStorage, __in_matrix InMat2, __out_matrix OutMat> void triangular_matrix_matrix_right_solve(ExecutionPolicy&& exec, InMat1 A, Triangle t, DiagonalStorage d, InMat2 B, OutMat X); template<__in_matrix InMat1, class Triangle, class DiagonalStorage, __inout_matrix InOutMat> void triangular_matrix_matrix_right_solve(InMat1 A, Triangle t, DiagonalStorage d, InOutMat B); template<class ExecutionPolicy, __in_matrix InMat1, class Triangle, class DiagonalStorage, __inout_matrix InOutMat> void triangular_matrix_matrix_right_solve(ExecutionPolicy&& exec, InMat1 A, Triangle t, DiagonalStorage d, InOutMat B); }
Tags
namespace std::linalg { struct column_major_t { explicit column_major_t() = default; }; inline constexpr column_major_t column_major = { }; struct row_major_t { explicit row_major_t() = default; }; inline constexpr row_major_t row_major = { }; struct upper_triangle_t { explicit upper_triangle_t() = default; }; inline constexpr upper_triangle_t upper_triangle = { }; struct lower_triangle_t { explicit lower_triangle_t() = default; }; inline constexpr lower_triangle_t lower_triangle = { }; struct implicit_unit_diagonal_t { explicit implicit_unit_diagonal_t() = default; }; inline constexpr implicit_unit_diagonal_t implicit_unit_diagonal = { }; struct explicit_diagonal_t { explicit explicit_diagonal_t() = default; }; inline constexpr explicit_diagonal_t explicit_diagonal = { }; }
`-Tags und enthält ausschließlich C++-Code. Gemäß den Anweisungen wurde daher kein Text übersetzt, da: 1. Alle HTML-Tags und Attribute unverändert bleiben 2. Der gesamte Inhalt innerhalb von ``-Tags nicht übersetzt wird 3. C++-spezifische Begriffe nicht übersetzt werden Der Code zeigt C++-Strukturen für lineare Algebra-Tags aus der `std::linalg`-Namespace, die in ihrer originalen englischen Form belassen wurden.
Klassentemplate std::linalg::layout_blas_packed
namespace std::linalg { template<class Triangle, class StorageOrder> class layout_blas_packed { public: using triangle_type = Triangle; using storage_order_type = StorageOrder; template<class Extents> struct mapping { public: using extents_type = Extents; using index_type = typename extents_type::index_type; using size_type = typename extents_type::size_type; using rank_type = typename extents_type::rank_type; using layout_type = layout_blas_packed<Triangle, StorageOrder>; private: Extents __the_extents{}; // nur zur Veranschaulichung public: constexpr mapping() noexcept = default; constexpr mapping(const mapping&) noexcept = default; constexpr mapping(const extents_type& e) noexcept; template<class OtherExtents> constexpr explicit(!is_convertible_v<OtherExtents, extents_type>) mapping(const mapping<OtherExtents>& other) noexcept; constexpr mapping& operator=(const mapping&) noexcept = default; constexpr extents_type extents() const noexcept { return __the_extents; } constexpr size_type required_span_size() const noexcept; template<class Index0, class Index1> constexpr index_type operator() (Index0 ind0, Index1 ind1) const noexcept; static constexpr bool is_always_unique() { return (extents_type::static_extent(0) != dynamic_extent && extents_type::static_extent(0) < 2) || (extents_type::static_extent(1) != dynamic_extent && extents_type::static_extent(1) < 2); } static constexpr bool is_always_exhaustive() { return true; } static constexpr bool is_always_strided() { return is_always_unique(); } constexpr bool is_unique() const noexcept { return __the_extents.extent(0) < 2; } constexpr bool is_exhaustive() const noexcept { return true; } constexpr bool is_strided() const noexcept { return __the_extents.extent(0) < 2; } constexpr index_type stride(rank_type) const noexcept; template<class OtherExtents> friend constexpr bool operator==(const mapping&, const mapping<OtherExtents>&) noexcept; }; }; }
Klassentemplate std::linalg::scaled_accessor
namespace std::linalg { template<class ScalingFactor, class NestedAccessor> class scaled_accessor { public: using element_type = add_const_t<decltype(declval<ScalingFactor>() * declval<NestedAccessor::element_type>())>; using reference = remove_const_t<element_type>; using data_handle_type = NestedAccessor::data_handle_type; using offset_policy = scaled_accessor<ScalingFactor, NestedAccessor::offset_policy>; constexpr scaled_accessor() = default; template<class OtherNestedAccessor> explicit(!is_convertible_v<OtherNestedAccessor, NestedAccessor>) constexpr scaled_accessor(const scaled_accessor<ScalingFactor, OtherNestedAccessor>&); constexpr scaled_accessor(const ScalingFactor& s, const Accessor& a); constexpr reference access(data_handle_type p, size_t i) const noexcept; constexpr offset_policy::data_handle_type offset(data_handle_type p, size_t i) const noexcept; constexpr const ScalingFactor& scaling_factor() const noexcept { return __scaling_factor; } constexpr const NestedAccessor& nested_accessor() const noexcept { return __nested_accessor; } private: ScalingFactor __scaling_factor; // nur zur Darstellung NestedAccessor __nested_accessor; // nur zur Darstellung }; }
Klassentemplate std::linalg::conjugated_accessor
namespace std::linalg { template<class NestedAccessor> class conjugated_accessor { private: NestedAccessor __nested_accessor; // nur zur Darstellung public: using element_type = add_const_t<decltype(/*conj-if-needed*/(declval<NestedAccessor::element_type>()))>; using reference = remove_const_t<element_type>; using data_handle_type = typename NestedAccessor::data_handle_type; using offset_policy = conjugated_accessor<NestedAccessor::offset_policy>; constexpr conjugated_accessor() = default; template<class OtherNestedAccessor> explicit(!is_convertible_v<OtherNestedAccessor, NestedAccessor>) constexpr conjugated_accessor(const conjugated_accessor<OtherNestedAccessor>& other); constexpr reference access(data_handle_type p, size_t i) const; constexpr typename offset_policy::data_handle_type offset(data_handle_type p, size_t i) const; constexpr const NestedAccessor& nested_accessor() const noexcept { return __nested_accessor; } }; }
Klassentemplate std::linalg::layout_transpose
namespace std::linalg { template<class InputExtents> using __transpose_extents_t = /* siehe Beschreibung */; // nur zur Darstellung template<class Layout> class layout_transpose { public: using nested_layout_type = Layout; template<class Extents> struct mapping { private: using __nested_mapping_type = typename Layout::template mapping< __transpose_extents_t<Extents>>; // nur zur Darstellung __nested_mapping_type __nested_mapping; // nur zur Darstellung extents_type __extents; // nur zur Darstellung public: using extents_type = Extents; using index_type = typename extents_type::index_type; using size_type = typename extents_type::size_type; using rank_type = typename extents_type::rank_type; using layout_type = layout_transpose; constexpr explicit mapping(const __nested_mapping_type& map); constexpr const extents_type& extents() const noexcept { return __extents; } constexpr index_type required_span_size() const { return __nested_mapping.required_span_size(); } template<class Index0, class Index1> constexpr index_type operator()(Index0 ind0, Index1 ind1) const { return __nested_mapping(ind1, ind0); } constexpr const __nested_mapping_type& nested_mapping() const noexcept { return __nested_mapping; } static constexpr bool is_always_unique() noexcept { return __nested_mapping_type::is_always_unique(); } static constexpr bool is_always_exhaustive() noexcept { return __nested_mapping_type::is_always_exhaustive(); } static constexpr bool is_always_strided() noexcept { return __nested_mapping_type::is_always_strided(); } constexpr bool is_unique() const { return __nested_mapping.is_unique(); } constexpr bool is_exhaustive() const { return __nested_mapping.is_exhaustive(); } constexpr bool is_strided() const { return __nested_mapping.is_strided(); } constexpr index_type stride(size_t r) const; template<class OtherExtents> friend constexpr bool operator==(const mapping& x, const mapping<OtherExtents>& y); }; }; }
Hilfskonzepte und Merkmale
namespace std::linalg { template<class T> struct __is_mdspan : false_type {}; // exposition only template<class ElementType, class Extents, class Layout, class Accessor> struct __is_mdspan<mdspan<ElementType, Extents, Layout, Accessor>> : true_type {}; // exposition only template<class T> concept __in_vector = // exposition only __is_mdspan<T>::value && T::Rang() == 1; template<class T> concept __out_vector = // exposition only __is_mdspan<T>::value && T::Rang() == 1 && is_assignable_v<typename T::Referenz, typename T::element_type> && T::is_always_unique(); template<class T> concept __inout_vector = // exposition only __is_mdspan<T>::value && T::Rang() == 1 && is_assignable_v<typename T::Referenz, typename T::element_type> && T::is_always_unique(); template<class T> concept __in_matrix = // exposition only __is_mdspan<T>::value && T::Rang() == 2; template<class T> concept __out_matrix = // exposition only __is_mdspan<T>::value && T::Rang() == 2 && is_assignable_v<typename T::Referenz, typename T::element_type> && T::is_always_unique(); template<class T> concept __inout_matrix = // exposition only __is_mdspan<T>::value && T::Rang() == 2 && is_assignable_v<typename T::Referenz, typename T::element_type> && T::is_always_unique(); template<class T> concept __possibly_packed_inout_matrix = // exposition only __is_mdspan<T>::value && T::Rang() == 2 && is_assignable_v<typename T::Referenz, typename T::element_type> && (T::is_always_unique() || is_same_v<typename T::layout_type, layout_blas_packed>); template<class T> concept __in_object = // exposition only __is_mdspan<T>::value && (T::Rang() == 1 || T::Rang() == 2); template<class T> concept __out_object = // exposition only __is_mdspan<T>::value && (T::Rang() == 1 || T::Rang() == 2) && is_assignable_v<typename T::Referenz, typename T::element_type> && T::is_always_unique(); template<class T> concept __inout_object = // exposition only __is_mdspan<T>::value && (T::Rang() == 1 || T::Rang() == 2) && is_assignable_v<typename T::Referenz, typename T::element_type> && T::is_always_unique(); }